Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320918907> ?p ?o ?g. }
- W4320918907 endingPage "2186" @default.
- W4320918907 startingPage "2186" @default.
- W4320918907 abstract "Intelligent medical robots can effectively help doctors carry out a series of medical diagnoses and auxiliary treatments and alleviate the current shortage of social personnel. Therefore, this paper investigates how to use deep reinforcement learning to solve dynamic medical auscultation tasks. We propose a constant force-tracking control method for dynamic environments and a modeling method that satisfies physical characteristics to simulate the dynamic breathing process and design an optimal reward function for the task of achieving efficient learning of the control strategy. We have carried out a large number of simulation experiments, and the error between the tracking of normal force and expected force is basically within ±0.5 N. The control strategy is tested in a real environment. The preliminary results show that the control strategy performs well in the constant force-tracking of medical auscultation tasks. The contact force is always within a safe and stable range, and the average contact force is about 5.2 N." @default.
- W4320918907 created "2023-02-16" @default.
- W4320918907 creator A5014621529 @default.
- W4320918907 creator A5021381854 @default.
- W4320918907 creator A5044470103 @default.
- W4320918907 creator A5056248574 @default.
- W4320918907 creator A5058348730 @default.
- W4320918907 creator A5087483052 @default.
- W4320918907 date "2023-02-15" @default.
- W4320918907 modified "2023-10-16" @default.
- W4320918907 title "Constant Force-Tracking Control Based on Deep Reinforcement Learning in Dynamic Auscultation Environment" @default.
- W4320918907 cites W1977655452 @default.
- W4320918907 cites W1978023077 @default.
- W4320918907 cites W2078681999 @default.
- W4320918907 cites W2121536419 @default.
- W4320918907 cites W2156321584 @default.
- W4320918907 cites W2169440744 @default.
- W4320918907 cites W2247230765 @default.
- W4320918907 cites W2295584263 @default.
- W4320918907 cites W2529658650 @default.
- W4320918907 cites W2569414656 @default.
- W4320918907 cites W2575705757 @default.
- W4320918907 cites W2789837488 @default.
- W4320918907 cites W2909718913 @default.
- W4320918907 cites W2921478950 @default.
- W4320918907 cites W2982651739 @default.
- W4320918907 cites W2999141988 @default.
- W4320918907 cites W3005451807 @default.
- W4320918907 cites W3028308378 @default.
- W4320918907 cites W3096306506 @default.
- W4320918907 cites W3115481033 @default.
- W4320918907 cites W3125472763 @default.
- W4320918907 cites W3127561923 @default.
- W4320918907 cites W3128707967 @default.
- W4320918907 cites W3130506077 @default.
- W4320918907 cites W3131560642 @default.
- W4320918907 cites W3190259769 @default.
- W4320918907 cites W4200246998 @default.
- W4320918907 cites W4283073771 @default.
- W4320918907 cites W4288905867 @default.
- W4320918907 cites W4289987806 @default.
- W4320918907 doi "https://doi.org/10.3390/s23042186" @default.
- W4320918907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36850780" @default.
- W4320918907 hasPublicationYear "2023" @default.
- W4320918907 type Work @default.
- W4320918907 citedByCount "0" @default.
- W4320918907 crossrefType "journal-article" @default.
- W4320918907 hasAuthorship W4320918907A5014621529 @default.
- W4320918907 hasAuthorship W4320918907A5021381854 @default.
- W4320918907 hasAuthorship W4320918907A5044470103 @default.
- W4320918907 hasAuthorship W4320918907A5056248574 @default.
- W4320918907 hasAuthorship W4320918907A5058348730 @default.
- W4320918907 hasAuthorship W4320918907A5087483052 @default.
- W4320918907 hasBestOaLocation W43209189071 @default.
- W4320918907 hasConcept C111919701 @default.
- W4320918907 hasConcept C121332964 @default.
- W4320918907 hasConcept C126838900 @default.
- W4320918907 hasConcept C127413603 @default.
- W4320918907 hasConcept C133731056 @default.
- W4320918907 hasConcept C154945302 @default.
- W4320918907 hasConcept C15744967 @default.
- W4320918907 hasConcept C19417346 @default.
- W4320918907 hasConcept C199360897 @default.
- W4320918907 hasConcept C201995342 @default.
- W4320918907 hasConcept C2775924081 @default.
- W4320918907 hasConcept C2775936607 @default.
- W4320918907 hasConcept C2777027219 @default.
- W4320918907 hasConcept C2777324038 @default.
- W4320918907 hasConcept C2780451532 @default.
- W4320918907 hasConcept C41008148 @default.
- W4320918907 hasConcept C44154836 @default.
- W4320918907 hasConcept C47446073 @default.
- W4320918907 hasConcept C62520636 @default.
- W4320918907 hasConcept C71924100 @default.
- W4320918907 hasConcept C81302111 @default.
- W4320918907 hasConcept C90509273 @default.
- W4320918907 hasConcept C97541855 @default.
- W4320918907 hasConcept C98045186 @default.
- W4320918907 hasConceptScore W4320918907C111919701 @default.
- W4320918907 hasConceptScore W4320918907C121332964 @default.
- W4320918907 hasConceptScore W4320918907C126838900 @default.
- W4320918907 hasConceptScore W4320918907C127413603 @default.
- W4320918907 hasConceptScore W4320918907C133731056 @default.
- W4320918907 hasConceptScore W4320918907C154945302 @default.
- W4320918907 hasConceptScore W4320918907C15744967 @default.
- W4320918907 hasConceptScore W4320918907C19417346 @default.
- W4320918907 hasConceptScore W4320918907C199360897 @default.
- W4320918907 hasConceptScore W4320918907C201995342 @default.
- W4320918907 hasConceptScore W4320918907C2775924081 @default.
- W4320918907 hasConceptScore W4320918907C2775936607 @default.
- W4320918907 hasConceptScore W4320918907C2777027219 @default.
- W4320918907 hasConceptScore W4320918907C2777324038 @default.
- W4320918907 hasConceptScore W4320918907C2780451532 @default.
- W4320918907 hasConceptScore W4320918907C41008148 @default.
- W4320918907 hasConceptScore W4320918907C44154836 @default.
- W4320918907 hasConceptScore W4320918907C47446073 @default.
- W4320918907 hasConceptScore W4320918907C62520636 @default.
- W4320918907 hasConceptScore W4320918907C71924100 @default.