Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320918908> ?p ?o ?g. }
- W4320918908 endingPage "723" @default.
- W4320918908 startingPage "723" @default.
- W4320918908 abstract "Over the past few decades, the prevalence of chronic illnesses in humans associated with high blood sugar has dramatically increased. Such a disease is referred to medically as diabetes mellitus. Diabetes mellitus can be categorized into three types, namely types 1, 2, and 3. When beta cells do not secrete enough insulin, type 1 diabetes develops. When beta cells create insulin, but the body is unable to use it, type 2 diabetes results. The last category is called gestational diabetes or type 3. This happens during the trimesters of pregnancy in women. Gestational diabetes, however, disappears automatically after childbirth or may continue to develop into type 2 diabetes. To improve their treatment strategies and facilitate healthcare, an automated information system to diagnose diabetes mellitus is required. In this context, this paper presents a novel system of classification of the three types of diabetes mellitus using a multi-layer neural network no-prop algorithm. The algorithm uses two major phases in the information system: the training phase and the testing phase. In each phase, the relevant attributes are identified using the attribute-selection process, and the neural network is trained individually in a multi-layer manner, starting with normal and type 1 diabetes, then normal and type 2 diabetes, and finally healthy and gestational diabetes. Classification is made more effective by the architecture of the multi-layer neural network. To provide experimental analysis and performances of diabetes diagnoses in terms of sensitivity, specificity, and accuracy, a confusion matrix is developed. The maximum specificity and sensitivity values of 0.95 and 0.97 are attained by this suggested multi-layer neural network. With an accuracy score of 97% for the categorization of diabetes mellitus, this proposed model outperforms other models, demonstrating that it is a workable and efficient approach." @default.
- W4320918908 created "2023-02-16" @default.
- W4320918908 creator A5013635040 @default.
- W4320918908 creator A5021370867 @default.
- W4320918908 creator A5037648726 @default.
- W4320918908 creator A5057503238 @default.
- W4320918908 creator A5061012520 @default.
- W4320918908 creator A5081421981 @default.
- W4320918908 date "2023-02-14" @default.
- W4320918908 modified "2023-09-25" @default.
- W4320918908 title "Machine-Learning-Based Diabetes Mellitus Risk Prediction Using Multi-Layer Neural Network No-Prop Algorithm" @default.
- W4320918908 cites W1570834090 @default.
- W4320918908 cites W1989149221 @default.
- W4320918908 cites W2032300448 @default.
- W4320918908 cites W2063046703 @default.
- W4320918908 cites W2083780116 @default.
- W4320918908 cites W2461522970 @default.
- W4320918908 cites W2569214105 @default.
- W4320918908 cites W2900329012 @default.
- W4320918908 cites W2908604688 @default.
- W4320918908 cites W2953421802 @default.
- W4320918908 cites W2985452234 @default.
- W4320918908 cites W3001481174 @default.
- W4320918908 cites W3008233702 @default.
- W4320918908 cites W3020776760 @default.
- W4320918908 cites W3130449168 @default.
- W4320918908 cites W4205307972 @default.
- W4320918908 cites W901067443 @default.
- W4320918908 doi "https://doi.org/10.3390/diagnostics13040723" @default.
- W4320918908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36832207" @default.
- W4320918908 hasPublicationYear "2023" @default.
- W4320918908 type Work @default.
- W4320918908 citedByCount "2" @default.
- W4320918908 countsByYear W43209189082023 @default.
- W4320918908 crossrefType "journal-article" @default.
- W4320918908 hasAuthorship W4320918908A5013635040 @default.
- W4320918908 hasAuthorship W4320918908A5021370867 @default.
- W4320918908 hasAuthorship W4320918908A5037648726 @default.
- W4320918908 hasAuthorship W4320918908A5057503238 @default.
- W4320918908 hasAuthorship W4320918908A5061012520 @default.
- W4320918908 hasAuthorship W4320918908A5081421981 @default.
- W4320918908 hasBestOaLocation W43209189081 @default.
- W4320918908 hasConcept C11413529 @default.
- W4320918908 hasConcept C119857082 @default.
- W4320918908 hasConcept C126322002 @default.
- W4320918908 hasConcept C134018914 @default.
- W4320918908 hasConcept C138602881 @default.
- W4320918908 hasConcept C151730666 @default.
- W4320918908 hasConcept C154945302 @default.
- W4320918908 hasConcept C2777180221 @default.
- W4320918908 hasConcept C2779134260 @default.
- W4320918908 hasConcept C2779234561 @default.
- W4320918908 hasConcept C2779343474 @default.
- W4320918908 hasConcept C2779434492 @default.
- W4320918908 hasConcept C2910068830 @default.
- W4320918908 hasConcept C41008148 @default.
- W4320918908 hasConcept C46973012 @default.
- W4320918908 hasConcept C50644808 @default.
- W4320918908 hasConcept C54355233 @default.
- W4320918908 hasConcept C555293320 @default.
- W4320918908 hasConcept C71924100 @default.
- W4320918908 hasConcept C86803240 @default.
- W4320918908 hasConceptScore W4320918908C11413529 @default.
- W4320918908 hasConceptScore W4320918908C119857082 @default.
- W4320918908 hasConceptScore W4320918908C126322002 @default.
- W4320918908 hasConceptScore W4320918908C134018914 @default.
- W4320918908 hasConceptScore W4320918908C138602881 @default.
- W4320918908 hasConceptScore W4320918908C151730666 @default.
- W4320918908 hasConceptScore W4320918908C154945302 @default.
- W4320918908 hasConceptScore W4320918908C2777180221 @default.
- W4320918908 hasConceptScore W4320918908C2779134260 @default.
- W4320918908 hasConceptScore W4320918908C2779234561 @default.
- W4320918908 hasConceptScore W4320918908C2779343474 @default.
- W4320918908 hasConceptScore W4320918908C2779434492 @default.
- W4320918908 hasConceptScore W4320918908C2910068830 @default.
- W4320918908 hasConceptScore W4320918908C41008148 @default.
- W4320918908 hasConceptScore W4320918908C46973012 @default.
- W4320918908 hasConceptScore W4320918908C50644808 @default.
- W4320918908 hasConceptScore W4320918908C54355233 @default.
- W4320918908 hasConceptScore W4320918908C555293320 @default.
- W4320918908 hasConceptScore W4320918908C71924100 @default.
- W4320918908 hasConceptScore W4320918908C86803240 @default.
- W4320918908 hasIssue "4" @default.
- W4320918908 hasLocation W43209189081 @default.
- W4320918908 hasLocation W43209189082 @default.
- W4320918908 hasLocation W43209189083 @default.
- W4320918908 hasOpenAccess W4320918908 @default.
- W4320918908 hasPrimaryLocation W43209189081 @default.
- W4320918908 hasRelatedWork W2748952813 @default.
- W4320918908 hasRelatedWork W2973263109 @default.
- W4320918908 hasRelatedWork W3081504753 @default.
- W4320918908 hasRelatedWork W4210567350 @default.
- W4320918908 hasRelatedWork W4231994957 @default.
- W4320918908 hasRelatedWork W4281386417 @default.
- W4320918908 hasRelatedWork W4281645081 @default.
- W4320918908 hasRelatedWork W4293525103 @default.
- W4320918908 hasRelatedWork W4321369284 @default.
- W4320918908 hasRelatedWork W4361795583 @default.