Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320919005> ?p ?o ?g. }
- W4320919005 endingPage "720" @default.
- W4320919005 startingPage "720" @default.
- W4320919005 abstract "Endoscopic procedures for diagnosing gastrointestinal tract findings depend on specialist experience and inter-observer variability. This variability can cause minor lesions to be missed and prevent early diagnosis. In this study, deep learning-based hybrid stacking ensemble modeling has been proposed for detecting and classifying gastrointestinal system findings, aiming at early diagnosis with high accuracy and sensitive measurements and saving workload to help the specialist and objectivity in endoscopic diagnosis. In the first level of the proposed bi-level stacking ensemble approach, predictions are obtained by applying 5-fold cross-validation to three new CNN models. A machine learning classifier selected at the second level is trained according to the obtained predictions, and the final classification result is reached. The performances of the stacking models were compared with the performances of the deep learning models, and McNemar's statistical test was applied to support the results. According to the experimental results, stacking ensemble models performed with a significant difference with 98.42% ACC and 98.19% MCC in the KvasirV2 dataset and 98.53% ACC and 98.39% MCC in the HyperKvasir dataset. This study is the first to offer a new learning-oriented approach that efficiently evaluates CNN features and provides objective and reliable results with statistical testing compared to state-of-the-art studies on the subject. The proposed approach improves the performance of deep learning models and outperforms the state-of-the-art studies in the literature." @default.
- W4320919005 created "2023-02-16" @default.
- W4320919005 creator A5018582996 @default.
- W4320919005 creator A5037256687 @default.
- W4320919005 creator A5058862653 @default.
- W4320919005 creator A5063767889 @default.
- W4320919005 creator A5073416837 @default.
- W4320919005 creator A5088721490 @default.
- W4320919005 date "2023-02-14" @default.
- W4320919005 modified "2023-09-23" @default.
- W4320919005 title "A New Approach for Gastrointestinal Tract Findings Detection and Classification: Deep Learning-Based Hybrid Stacking Ensemble Models" @default.
- W4320919005 cites W2019847820 @default.
- W4320919005 cites W2025956883 @default.
- W4320919005 cites W2072581935 @default.
- W4320919005 cites W2153344530 @default.
- W4320919005 cites W2162498245 @default.
- W4320919005 cites W2623808523 @default.
- W4320919005 cites W2756474757 @default.
- W4320919005 cites W2783380896 @default.
- W4320919005 cites W2916105049 @default.
- W4320919005 cites W2916961940 @default.
- W4320919005 cites W2969441275 @default.
- W4320919005 cites W2990045262 @default.
- W4320919005 cites W2995616218 @default.
- W4320919005 cites W3047507497 @default.
- W4320919005 cites W3082604781 @default.
- W4320919005 cites W3091011414 @default.
- W4320919005 cites W3100501239 @default.
- W4320919005 cites W3106717751 @default.
- W4320919005 cites W3109469672 @default.
- W4320919005 cites W3126475432 @default.
- W4320919005 cites W3128646645 @default.
- W4320919005 cites W3149839747 @default.
- W4320919005 cites W3161134108 @default.
- W4320919005 cites W3192519463 @default.
- W4320919005 cites W3195640342 @default.
- W4320919005 cites W3200229395 @default.
- W4320919005 cites W3201271102 @default.
- W4320919005 cites W3208008707 @default.
- W4320919005 cites W4206437360 @default.
- W4320919005 cites W4281254982 @default.
- W4320919005 cites W4292858649 @default.
- W4320919005 cites W4297347930 @default.
- W4320919005 cites W4306376978 @default.
- W4320919005 cites W4308421351 @default.
- W4320919005 cites W4308506699 @default.
- W4320919005 cites W4309076914 @default.
- W4320919005 doi "https://doi.org/10.3390/diagnostics13040720" @default.
- W4320919005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36832205" @default.
- W4320919005 hasPublicationYear "2023" @default.
- W4320919005 type Work @default.
- W4320919005 citedByCount "1" @default.
- W4320919005 countsByYear W43209190052023 @default.
- W4320919005 crossrefType "journal-article" @default.
- W4320919005 hasAuthorship W4320919005A5018582996 @default.
- W4320919005 hasAuthorship W4320919005A5037256687 @default.
- W4320919005 hasAuthorship W4320919005A5058862653 @default.
- W4320919005 hasAuthorship W4320919005A5063767889 @default.
- W4320919005 hasAuthorship W4320919005A5073416837 @default.
- W4320919005 hasAuthorship W4320919005A5088721490 @default.
- W4320919005 hasBestOaLocation W43209190051 @default.
- W4320919005 hasConcept C105795698 @default.
- W4320919005 hasConcept C108583219 @default.
- W4320919005 hasConcept C119857082 @default.
- W4320919005 hasConcept C119898033 @default.
- W4320919005 hasConcept C121332964 @default.
- W4320919005 hasConcept C153180895 @default.
- W4320919005 hasConcept C154945302 @default.
- W4320919005 hasConcept C186282968 @default.
- W4320919005 hasConcept C33347731 @default.
- W4320919005 hasConcept C33923547 @default.
- W4320919005 hasConcept C41008148 @default.
- W4320919005 hasConcept C45942800 @default.
- W4320919005 hasConcept C46141821 @default.
- W4320919005 hasConcept C95623464 @default.
- W4320919005 hasConceptScore W4320919005C105795698 @default.
- W4320919005 hasConceptScore W4320919005C108583219 @default.
- W4320919005 hasConceptScore W4320919005C119857082 @default.
- W4320919005 hasConceptScore W4320919005C119898033 @default.
- W4320919005 hasConceptScore W4320919005C121332964 @default.
- W4320919005 hasConceptScore W4320919005C153180895 @default.
- W4320919005 hasConceptScore W4320919005C154945302 @default.
- W4320919005 hasConceptScore W4320919005C186282968 @default.
- W4320919005 hasConceptScore W4320919005C33347731 @default.
- W4320919005 hasConceptScore W4320919005C33923547 @default.
- W4320919005 hasConceptScore W4320919005C41008148 @default.
- W4320919005 hasConceptScore W4320919005C45942800 @default.
- W4320919005 hasConceptScore W4320919005C46141821 @default.
- W4320919005 hasConceptScore W4320919005C95623464 @default.
- W4320919005 hasIssue "4" @default.
- W4320919005 hasLocation W43209190051 @default.
- W4320919005 hasLocation W43209190052 @default.
- W4320919005 hasLocation W43209190053 @default.
- W4320919005 hasOpenAccess W4320919005 @default.
- W4320919005 hasPrimaryLocation W43209190051 @default.
- W4320919005 hasRelatedWork W2810053714 @default.
- W4320919005 hasRelatedWork W3136979370 @default.
- W4320919005 hasRelatedWork W3158264953 @default.