Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320920811> ?p ?o ?g. }
- W4320920811 endingPage "2166" @default.
- W4320920811 startingPage "2166" @default.
- W4320920811 abstract "The safety assessment of cyber-physical systems (CPSs) requires tremendous effort, as the complexity of cyber-physical systems is increasing. A well-known approach for the safety assessment of CPSs is fault injection (FI). The goal of fault injection is to find a catastrophic fault that can cause the system to fail by injecting faults into it. These catastrophic faults are less likely to occur, and finding them requires tremendous labor and cost. In this study, we propose a reinforcement learning (RL)-based method to automatically configure faults in the system under test and to find catastrophic faults in the early stage of system development at the model level. The proposed method provides a guideline to utilize high-level domain knowledge about a system model for constructing the reinforcement learning agent and fault injection setup. In this study, we used the system (safety) specification to shape the reward function in the reinforcement learning agent. The reinforcement learning agent dynamically interacted with the model under test to identify catastrophic faults. We compared the proposed method with random-based fault injection in two case studies using MATLAB/Simulink. Our proposed method outperformed random-based fault injection in terms of the severity and number of faults found." @default.
- W4320920811 created "2023-02-16" @default.
- W4320920811 creator A5012115372 @default.
- W4320920811 creator A5023477372 @default.
- W4320920811 creator A5025706354 @default.
- W4320920811 date "2023-02-14" @default.
- W4320920811 modified "2023-09-30" @default.
- W4320920811 title "Failure Identification Using Model-Implemented Fault Injection with Domain Knowledge-Guided Reinforcement Learning" @default.
- W4320920811 cites W1597602744 @default.
- W4320920811 cites W1612293527 @default.
- W4320920811 cites W1936283550 @default.
- W4320920811 cites W2019925718 @default.
- W4320920811 cites W2063647782 @default.
- W4320920811 cites W2071392297 @default.
- W4320920811 cites W2092884371 @default.
- W4320920811 cites W2118850201 @default.
- W4320920811 cites W2119599601 @default.
- W4320920811 cites W2119717200 @default.
- W4320920811 cites W2121913052 @default.
- W4320920811 cites W2128456312 @default.
- W4320920811 cites W2130237007 @default.
- W4320920811 cites W2145071552 @default.
- W4320920811 cites W2148602057 @default.
- W4320920811 cites W2149568346 @default.
- W4320920811 cites W2154538165 @default.
- W4320920811 cites W2165016980 @default.
- W4320920811 cites W2169239645 @default.
- W4320920811 cites W2607288671 @default.
- W4320920811 cites W2795800960 @default.
- W4320920811 cites W2796290181 @default.
- W4320920811 cites W2903464615 @default.
- W4320920811 cites W2938993579 @default.
- W4320920811 cites W2949676527 @default.
- W4320920811 cites W2963208512 @default.
- W4320920811 cites W3009657764 @default.
- W4320920811 cites W3046225906 @default.
- W4320920811 cites W3098394944 @default.
- W4320920811 cites W3100919291 @default.
- W4320920811 cites W3101000982 @default.
- W4320920811 cites W3102785527 @default.
- W4320920811 cites W3103154468 @default.
- W4320920811 cites W3112977404 @default.
- W4320920811 cites W3116444130 @default.
- W4320920811 cites W3131603686 @default.
- W4320920811 cites W3144136025 @default.
- W4320920811 cites W3149134903 @default.
- W4320920811 cites W3167640147 @default.
- W4320920811 cites W3206558114 @default.
- W4320920811 cites W3214360577 @default.
- W4320920811 cites W32403112 @default.
- W4320920811 cites W4211115633 @default.
- W4320920811 cites W4246568307 @default.
- W4320920811 cites W4291213652 @default.
- W4320920811 cites W4298110250 @default.
- W4320920811 cites W4307280301 @default.
- W4320920811 cites W4308643724 @default.
- W4320920811 cites W4320920811 @default.
- W4320920811 doi "https://doi.org/10.3390/s23042166" @default.
- W4320920811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36850764" @default.
- W4320920811 hasPublicationYear "2023" @default.
- W4320920811 type Work @default.
- W4320920811 citedByCount "1" @default.
- W4320920811 countsByYear W43209208112023 @default.
- W4320920811 crossrefType "journal-article" @default.
- W4320920811 hasAuthorship W4320920811A5012115372 @default.
- W4320920811 hasAuthorship W4320920811A5023477372 @default.
- W4320920811 hasAuthorship W4320920811A5025706354 @default.
- W4320920811 hasBestOaLocation W43209208111 @default.
- W4320920811 hasConcept C116834253 @default.
- W4320920811 hasConcept C127313418 @default.
- W4320920811 hasConcept C127413603 @default.
- W4320920811 hasConcept C154945302 @default.
- W4320920811 hasConcept C165205528 @default.
- W4320920811 hasConcept C175551986 @default.
- W4320920811 hasConcept C199360897 @default.
- W4320920811 hasConcept C200601418 @default.
- W4320920811 hasConcept C207685749 @default.
- W4320920811 hasConcept C2775928411 @default.
- W4320920811 hasConcept C2777904410 @default.
- W4320920811 hasConcept C41008148 @default.
- W4320920811 hasConcept C59822182 @default.
- W4320920811 hasConcept C86803240 @default.
- W4320920811 hasConcept C97541855 @default.
- W4320920811 hasConceptScore W4320920811C116834253 @default.
- W4320920811 hasConceptScore W4320920811C127313418 @default.
- W4320920811 hasConceptScore W4320920811C127413603 @default.
- W4320920811 hasConceptScore W4320920811C154945302 @default.
- W4320920811 hasConceptScore W4320920811C165205528 @default.
- W4320920811 hasConceptScore W4320920811C175551986 @default.
- W4320920811 hasConceptScore W4320920811C199360897 @default.
- W4320920811 hasConceptScore W4320920811C200601418 @default.
- W4320920811 hasConceptScore W4320920811C207685749 @default.
- W4320920811 hasConceptScore W4320920811C2775928411 @default.
- W4320920811 hasConceptScore W4320920811C2777904410 @default.
- W4320920811 hasConceptScore W4320920811C41008148 @default.
- W4320920811 hasConceptScore W4320920811C59822182 @default.
- W4320920811 hasConceptScore W4320920811C86803240 @default.
- W4320920811 hasConceptScore W4320920811C97541855 @default.