Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320921229> ?p ?o ?g. }
- W4320921229 endingPage "104208" @default.
- W4320921229 startingPage "104208" @default.
- W4320921229 abstract "The structure of coal indicates the degree of its fragmentation after tectonic movement, which affects the exploration and development of coalbed methane (CBM). Although coal core observations are the most convenient and intuitive way of identifying the coal structure, they are not applicable for use in unexplored coal seams without CBM wells, and they are also very time-consuming. In comparison, geophysical-logging interpretation of the coal structure is more efficient and economical. However, although qualitative methods, such as principal component analysis (PCA), can be used to identify the coal structure with geophysical logging, the interpretation is limited by the calculation ability, and improvements are required based on the structure of an empirical model. Multinomial logistic regression (MLR), random forest (RF), and deep fully connected neural network (DNN) are effective machine learning methods more accurate than the traditional method that with model-aided identification. In this respect, the MLR method is a classical method based on mathematical linear regression, and it has a low construction cost; RF is an ensemble learning algorithm based on a decision tree and use of a bagging algorithm; and DNN is a deep learning model based on self-built feature engineering that has high classification accuracy under a large amount of data training and provides obvious advantages in visual coal classification problems. In this work, the three machine learning methods, MLR, RF, and DNN, were used to identify the coal structure. Two sets of logging data comprising different quantities from the Anze Block of the southern Qinshui Basin, North China, were selected to quantitatively compare the accuracy of coal structure identification with partial coal core observation. The results showed that for 210 and 840 samples, respectively, the accuracy was 76% and 77% for MLR, 83% and 86% for RF, and 82% and 86% for DNN. These results show that the MLR and DNN methods are superior for use with minimal and maximum amounts of data, respectively, and the RF method provides overall accuracy. Furthermore, an algorithmic classification of the coal structure was established, and the geological factors controlling the predicted structure, such as geostress, coal seam thickness, and burial depth, were distinguished." @default.
- W4320921229 created "2023-02-16" @default.
- W4320921229 creator A5039656549 @default.
- W4320921229 creator A5059081976 @default.
- W4320921229 creator A5067383559 @default.
- W4320921229 creator A5068264390 @default.
- W4320921229 creator A5077293556 @default.
- W4320921229 creator A5079768155 @default.
- W4320921229 date "2023-03-01" @default.
- W4320921229 modified "2023-10-18" @default.
- W4320921229 title "Intelligent classification of coal structure using multinomial logistic regression, random forest and fully connected neural network with multisource geophysical logging data" @default.
- W4320921229 cites W1985763875 @default.
- W4320921229 cites W1997032863 @default.
- W4320921229 cites W2004378785 @default.
- W4320921229 cites W2016451901 @default.
- W4320921229 cites W2018028639 @default.
- W4320921229 cites W2048628678 @default.
- W4320921229 cites W2057387678 @default.
- W4320921229 cites W2060949530 @default.
- W4320921229 cites W2093307014 @default.
- W4320921229 cites W2128274832 @default.
- W4320921229 cites W2162479026 @default.
- W4320921229 cites W2536939122 @default.
- W4320921229 cites W2567511014 @default.
- W4320921229 cites W2604455479 @default.
- W4320921229 cites W2742800335 @default.
- W4320921229 cites W2759842046 @default.
- W4320921229 cites W2803434396 @default.
- W4320921229 cites W2804044431 @default.
- W4320921229 cites W2809056731 @default.
- W4320921229 cites W2810609661 @default.
- W4320921229 cites W2901691125 @default.
- W4320921229 cites W2942025903 @default.
- W4320921229 cites W2972816024 @default.
- W4320921229 cites W2981562735 @default.
- W4320921229 cites W3005394844 @default.
- W4320921229 cites W3027502089 @default.
- W4320921229 cites W3044462852 @default.
- W4320921229 cites W3080124479 @default.
- W4320921229 cites W3101748794 @default.
- W4320921229 cites W3103629134 @default.
- W4320921229 cites W3131318366 @default.
- W4320921229 cites W3134563434 @default.
- W4320921229 cites W3136305426 @default.
- W4320921229 cites W3136796909 @default.
- W4320921229 cites W3137118807 @default.
- W4320921229 cites W3138924292 @default.
- W4320921229 cites W3156408242 @default.
- W4320921229 cites W3175509498 @default.
- W4320921229 cites W3197603966 @default.
- W4320921229 cites W3200638911 @default.
- W4320921229 cites W3206212416 @default.
- W4320921229 cites W3211706894 @default.
- W4320921229 cites W3211960781 @default.
- W4320921229 cites W3216619447 @default.
- W4320921229 cites W4200561803 @default.
- W4320921229 cites W4205861768 @default.
- W4320921229 cites W4206795665 @default.
- W4320921229 cites W4210276552 @default.
- W4320921229 cites W4210983444 @default.
- W4320921229 cites W4212883601 @default.
- W4320921229 cites W4214561624 @default.
- W4320921229 cites W4214818503 @default.
- W4320921229 cites W4220776041 @default.
- W4320921229 cites W4221011068 @default.
- W4320921229 cites W4281711631 @default.
- W4320921229 cites W4281763989 @default.
- W4320921229 cites W4283079489 @default.
- W4320921229 cites W4296821790 @default.
- W4320921229 doi "https://doi.org/10.1016/j.coal.2023.104208" @default.
- W4320921229 hasPublicationYear "2023" @default.
- W4320921229 type Work @default.
- W4320921229 citedByCount "1" @default.
- W4320921229 countsByYear W43209212292023 @default.
- W4320921229 crossrefType "journal-article" @default.
- W4320921229 hasAuthorship W4320921229A5039656549 @default.
- W4320921229 hasAuthorship W4320921229A5059081976 @default.
- W4320921229 hasAuthorship W4320921229A5067383559 @default.
- W4320921229 hasAuthorship W4320921229A5068264390 @default.
- W4320921229 hasAuthorship W4320921229A5077293556 @default.
- W4320921229 hasAuthorship W4320921229A5079768155 @default.
- W4320921229 hasConcept C117568660 @default.
- W4320921229 hasConcept C119857082 @default.
- W4320921229 hasConcept C124101348 @default.
- W4320921229 hasConcept C127313418 @default.
- W4320921229 hasConcept C127413603 @default.
- W4320921229 hasConcept C153180895 @default.
- W4320921229 hasConcept C154945302 @default.
- W4320921229 hasConcept C169258074 @default.
- W4320921229 hasConcept C27438332 @default.
- W4320921229 hasConcept C35817400 @default.
- W4320921229 hasConcept C41008148 @default.
- W4320921229 hasConcept C50644808 @default.
- W4320921229 hasConcept C518851703 @default.
- W4320921229 hasConcept C548081761 @default.
- W4320921229 hasConcept C8058405 @default.
- W4320921229 hasConcept C84525736 @default.
- W4320921229 hasConceptScore W4320921229C117568660 @default.