Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320921390> ?p ?o ?g. }
- W4320921390 endingPage "122" @default.
- W4320921390 startingPage "110" @default.
- W4320921390 abstract "Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible. Prior arts including the deep learning models have been devoted to solving the problem of long MRI imaging time. Recently, deep generative models have exhibited great potentials in algorithm robustness and usage flexibility. Nevertheless, none of existing schemes can be learned from or employed to the k-space measurement directly. Furthermore, how do the deep generative models work well in hybrid domain is also worth being investigated. In this work, by taking advantage of the deep energy-based models, we propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement. Equipped with parallel and sequential orders, experimental comparisons with the state-of-the-arts demonstrated that they involve less error in reconstruction accuracy and are more stable under different acceleration factors." @default.
- W4320921390 created "2023-02-16" @default.
- W4320921390 creator A5006707718 @default.
- W4320921390 creator A5049459284 @default.
- W4320921390 creator A5057647276 @default.
- W4320921390 creator A5072109522 @default.
- W4320921390 creator A5074050033 @default.
- W4320921390 date "2023-06-01" @default.
- W4320921390 modified "2023-10-17" @default.
- W4320921390 title "K-space and image domain collaborative energy-based model for parallel MRI reconstruction" @default.
- W4320921390 cites W1497904071 @default.
- W4320921390 cites W1964647695 @default.
- W4320921390 cites W2029816571 @default.
- W4320921390 cites W2055151182 @default.
- W4320921390 cites W2056469265 @default.
- W4320921390 cites W2066457009 @default.
- W4320921390 cites W2111388536 @default.
- W4320921390 cites W2112910956 @default.
- W4320921390 cites W2117649283 @default.
- W4320921390 cites W2165142794 @default.
- W4320921390 cites W2574952845 @default.
- W4320921390 cites W2604388535 @default.
- W4320921390 cites W2781768394 @default.
- W4320921390 cites W2785239769 @default.
- W4320921390 cites W2795380527 @default.
- W4320921390 cites W2889995282 @default.
- W4320921390 cites W2962734274 @default.
- W4320921390 cites W2962903101 @default.
- W4320921390 cites W2963682501 @default.
- W4320921390 cites W2969785455 @default.
- W4320921390 cites W2991630443 @default.
- W4320921390 cites W3100730608 @default.
- W4320921390 cites W3111988465 @default.
- W4320921390 cites W3118294324 @default.
- W4320921390 cites W3161947941 @default.
- W4320921390 cites W3201909904 @default.
- W4320921390 cites W4233764193 @default.
- W4320921390 cites W4249760698 @default.
- W4320921390 doi "https://doi.org/10.1016/j.mri.2023.02.004" @default.
- W4320921390 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36796460" @default.
- W4320921390 hasPublicationYear "2023" @default.
- W4320921390 type Work @default.
- W4320921390 citedByCount "2" @default.
- W4320921390 countsByYear W43209213902023 @default.
- W4320921390 crossrefType "journal-article" @default.
- W4320921390 hasAuthorship W4320921390A5006707718 @default.
- W4320921390 hasAuthorship W4320921390A5049459284 @default.
- W4320921390 hasAuthorship W4320921390A5057647276 @default.
- W4320921390 hasAuthorship W4320921390A5072109522 @default.
- W4320921390 hasAuthorship W4320921390A5074050033 @default.
- W4320921390 hasBestOaLocation W43209213902 @default.
- W4320921390 hasConcept C104317684 @default.
- W4320921390 hasConcept C105795698 @default.
- W4320921390 hasConcept C108583219 @default.
- W4320921390 hasConcept C11413529 @default.
- W4320921390 hasConcept C115961682 @default.
- W4320921390 hasConcept C117896860 @default.
- W4320921390 hasConcept C119857082 @default.
- W4320921390 hasConcept C121332964 @default.
- W4320921390 hasConcept C126838900 @default.
- W4320921390 hasConcept C134306372 @default.
- W4320921390 hasConcept C143409427 @default.
- W4320921390 hasConcept C153180895 @default.
- W4320921390 hasConcept C154945302 @default.
- W4320921390 hasConcept C167966045 @default.
- W4320921390 hasConcept C185592680 @default.
- W4320921390 hasConcept C186370098 @default.
- W4320921390 hasConcept C197413143 @default.
- W4320921390 hasConcept C2780598303 @default.
- W4320921390 hasConcept C31972630 @default.
- W4320921390 hasConcept C33923547 @default.
- W4320921390 hasConcept C36503486 @default.
- W4320921390 hasConcept C39890363 @default.
- W4320921390 hasConcept C41008148 @default.
- W4320921390 hasConcept C55493867 @default.
- W4320921390 hasConcept C63479239 @default.
- W4320921390 hasConcept C71924100 @default.
- W4320921390 hasConcept C74650414 @default.
- W4320921390 hasConceptScore W4320921390C104317684 @default.
- W4320921390 hasConceptScore W4320921390C105795698 @default.
- W4320921390 hasConceptScore W4320921390C108583219 @default.
- W4320921390 hasConceptScore W4320921390C11413529 @default.
- W4320921390 hasConceptScore W4320921390C115961682 @default.
- W4320921390 hasConceptScore W4320921390C117896860 @default.
- W4320921390 hasConceptScore W4320921390C119857082 @default.
- W4320921390 hasConceptScore W4320921390C121332964 @default.
- W4320921390 hasConceptScore W4320921390C126838900 @default.
- W4320921390 hasConceptScore W4320921390C134306372 @default.
- W4320921390 hasConceptScore W4320921390C143409427 @default.
- W4320921390 hasConceptScore W4320921390C153180895 @default.
- W4320921390 hasConceptScore W4320921390C154945302 @default.
- W4320921390 hasConceptScore W4320921390C167966045 @default.
- W4320921390 hasConceptScore W4320921390C185592680 @default.
- W4320921390 hasConceptScore W4320921390C186370098 @default.
- W4320921390 hasConceptScore W4320921390C197413143 @default.
- W4320921390 hasConceptScore W4320921390C2780598303 @default.
- W4320921390 hasConceptScore W4320921390C31972630 @default.
- W4320921390 hasConceptScore W4320921390C33923547 @default.