Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320921486> ?p ?o ?g. }
- W4320921486 endingPage "4522" @default.
- W4320921486 startingPage "4504" @default.
- W4320921486 abstract "Summary In this article, an optimized formation control algorithm is presented for unmanned surface vehicles (USVs) with collision avoidance and prescribed performance. The prescribed formation geometry is designed in the leader‐follower formation architecture, in which each vehicle tracks its intermediary leader with preserving a desired separation. A prescribed performance control design technique is introduced to guarantee the transient and steady‐state performance specifications on formation errors. Radial basis function neural networks (NNs) are employed to approximate modeling uncertainties including damping terms and unmodeled dynamics. Based on an actor‐critic learning strategy, a reinforcement learning (RL) algorithm is proposed to ensure the optimality of formation control and the specified tracking accuracy simultaneously, in which actor NNs take appropriate control behaviors by interacting with the external environment, and critic NNs evaluate the control performance and generate a reinforcement signal to actor NNs for facilitating the improvement of subsequent behaviors. Stability analysis shows that the proposed optimal formation controller achieves semi‐global uniform ultimate boundedness of closed‐loop adaptive systems with prescribed performance. Comparative simulation results illustrate the effectiveness and superiority of the presented control algorithm." @default.
- W4320921486 created "2023-02-16" @default.
- W4320921486 creator A5007090387 @default.
- W4320921486 creator A5025577543 @default.
- W4320921486 creator A5053392073 @default.
- W4320921486 creator A5088071814 @default.
- W4320921486 date "2023-02-14" @default.
- W4320921486 modified "2023-10-15" @default.
- W4320921486 title "Adaptive optimal formation control for unmanned surface vehicles with guaranteed performance using actor‐critic learning architecture" @default.
- W4320921486 cites W1973564335 @default.
- W4320921486 cites W1977671496 @default.
- W4320921486 cites W1983523797 @default.
- W4320921486 cites W2010152647 @default.
- W4320921486 cites W2035003264 @default.
- W4320921486 cites W2047090868 @default.
- W4320921486 cites W2060471193 @default.
- W4320921486 cites W2084163350 @default.
- W4320921486 cites W2097121541 @default.
- W4320921486 cites W2103658214 @default.
- W4320921486 cites W2113442785 @default.
- W4320921486 cites W2150028611 @default.
- W4320921486 cites W2152161277 @default.
- W4320921486 cites W2624600449 @default.
- W4320921486 cites W2761264428 @default.
- W4320921486 cites W2767784613 @default.
- W4320921486 cites W2774852867 @default.
- W4320921486 cites W2780814805 @default.
- W4320921486 cites W2787063656 @default.
- W4320921486 cites W2790958326 @default.
- W4320921486 cites W2792111770 @default.
- W4320921486 cites W2794441464 @default.
- W4320921486 cites W2797305442 @default.
- W4320921486 cites W2803831050 @default.
- W4320921486 cites W2811002385 @default.
- W4320921486 cites W2948452254 @default.
- W4320921486 cites W3027251624 @default.
- W4320921486 cites W3027432742 @default.
- W4320921486 cites W3047221759 @default.
- W4320921486 cites W3047892733 @default.
- W4320921486 cites W3089091488 @default.
- W4320921486 cites W3103837574 @default.
- W4320921486 cites W3110363133 @default.
- W4320921486 cites W3120885975 @default.
- W4320921486 cites W3128440171 @default.
- W4320921486 cites W3131678030 @default.
- W4320921486 cites W3138795788 @default.
- W4320921486 cites W3179972165 @default.
- W4320921486 cites W3187550742 @default.
- W4320921486 cites W3195910542 @default.
- W4320921486 cites W3196755144 @default.
- W4320921486 cites W3201480909 @default.
- W4320921486 cites W3205647333 @default.
- W4320921486 cites W4206824914 @default.
- W4320921486 cites W4229068424 @default.
- W4320921486 cites W4293704343 @default.
- W4320921486 cites W4295308323 @default.
- W4320921486 cites W4296708564 @default.
- W4320921486 cites W4304479610 @default.
- W4320921486 cites W4310467047 @default.
- W4320921486 doi "https://doi.org/10.1002/rnc.6623" @default.
- W4320921486 hasPublicationYear "2023" @default.
- W4320921486 type Work @default.
- W4320921486 citedByCount "2" @default.
- W4320921486 countsByYear W43209214862023 @default.
- W4320921486 crossrefType "journal-article" @default.
- W4320921486 hasAuthorship W4320921486A5007090387 @default.
- W4320921486 hasAuthorship W4320921486A5025577543 @default.
- W4320921486 hasAuthorship W4320921486A5053392073 @default.
- W4320921486 hasAuthorship W4320921486A5088071814 @default.
- W4320921486 hasConcept C107464732 @default.
- W4320921486 hasConcept C111919701 @default.
- W4320921486 hasConcept C112972136 @default.
- W4320921486 hasConcept C11413529 @default.
- W4320921486 hasConcept C119857082 @default.
- W4320921486 hasConcept C121704057 @default.
- W4320921486 hasConcept C127413603 @default.
- W4320921486 hasConcept C133731056 @default.
- W4320921486 hasConcept C154945302 @default.
- W4320921486 hasConcept C203479927 @default.
- W4320921486 hasConcept C2524010 @default.
- W4320921486 hasConcept C2775924081 @default.
- W4320921486 hasConcept C2776799497 @default.
- W4320921486 hasConcept C2780799671 @default.
- W4320921486 hasConcept C2780864053 @default.
- W4320921486 hasConcept C33923547 @default.
- W4320921486 hasConcept C38652104 @default.
- W4320921486 hasConcept C41008148 @default.
- W4320921486 hasConcept C47446073 @default.
- W4320921486 hasConcept C48103436 @default.
- W4320921486 hasConcept C50644808 @default.
- W4320921486 hasConcept C6557445 @default.
- W4320921486 hasConcept C86803240 @default.
- W4320921486 hasConcept C97541855 @default.
- W4320921486 hasConceptScore W4320921486C107464732 @default.
- W4320921486 hasConceptScore W4320921486C111919701 @default.
- W4320921486 hasConceptScore W4320921486C112972136 @default.
- W4320921486 hasConceptScore W4320921486C11413529 @default.
- W4320921486 hasConceptScore W4320921486C119857082 @default.