Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320925627> ?p ?o ?g. }
- W4320925627 endingPage "92" @default.
- W4320925627 startingPage "81" @default.
- W4320925627 abstract "Aerial object detection is a key to many functionalities like animal population estimation, pedestrian counting, security systems and many more. Traditional methods made use of machine learning algorithms that involved hand-made features. At present, deep learning models have surpassed the conventional machine learning models. Some of the major problems faced in aerial object detection are angle shift and the small sizes of objects in aerial images. This paper discusses the developments in aerial object detection. It discusses the various approaches presented by researchers, the different datasets available today for the task, and some of the standard evaluation and metrics followed to evaluate models." @default.
- W4320925627 created "2023-02-16" @default.
- W4320925627 creator A5003797007 @default.
- W4320925627 creator A5034735061 @default.
- W4320925627 creator A5037334443 @default.
- W4320925627 creator A5058696921 @default.
- W4320925627 creator A5074031685 @default.
- W4320925627 date "2023-01-01" @default.
- W4320925627 modified "2023-09-23" @default.
- W4320925627 title "Aerial Object Detection Using Deep Learning: A Review" @default.
- W4320925627 cites W1536680647 @default.
- W4320925627 cites W2036989445 @default.
- W4320925627 cites W2102605133 @default.
- W4320925627 cites W2113650053 @default.
- W4320925627 cites W2115763357 @default.
- W4320925627 cites W2161969291 @default.
- W4320925627 cites W2179352600 @default.
- W4320925627 cites W2323722282 @default.
- W4320925627 cites W2359099468 @default.
- W4320925627 cites W2565639579 @default.
- W4320925627 cites W2784083162 @default.
- W4320925627 cites W2884561390 @default.
- W4320925627 cites W2945020140 @default.
- W4320925627 cites W2958897231 @default.
- W4320925627 cites W2963037989 @default.
- W4320925627 cites W2963150697 @default.
- W4320925627 cites W2963351448 @default.
- W4320925627 cites W2964979676 @default.
- W4320925627 cites W2979362285 @default.
- W4320925627 cites W2986499456 @default.
- W4320925627 cites W2998223435 @default.
- W4320925627 cites W3011688396 @default.
- W4320925627 cites W3015188652 @default.
- W4320925627 cites W3022557096 @default.
- W4320925627 cites W3090598983 @default.
- W4320925627 cites W3090953785 @default.
- W4320925627 cites W3092592142 @default.
- W4320925627 cites W3106250896 @default.
- W4320925627 cites W3131191133 @default.
- W4320925627 cites W3135352607 @default.
- W4320925627 cites W3136761610 @default.
- W4320925627 cites W3170033848 @default.
- W4320925627 cites W3172415217 @default.
- W4320925627 cites W3184246247 @default.
- W4320925627 cites W3210586215 @default.
- W4320925627 cites W639708223 @default.
- W4320925627 doi "https://doi.org/10.1007/978-981-19-7346-8_8" @default.
- W4320925627 hasPublicationYear "2023" @default.
- W4320925627 type Work @default.
- W4320925627 citedByCount "0" @default.
- W4320925627 crossrefType "book-chapter" @default.
- W4320925627 hasAuthorship W4320925627A5003797007 @default.
- W4320925627 hasAuthorship W4320925627A5034735061 @default.
- W4320925627 hasAuthorship W4320925627A5037334443 @default.
- W4320925627 hasAuthorship W4320925627A5058696921 @default.
- W4320925627 hasAuthorship W4320925627A5074031685 @default.
- W4320925627 hasConcept C108583219 @default.
- W4320925627 hasConcept C115961682 @default.
- W4320925627 hasConcept C119857082 @default.
- W4320925627 hasConcept C127413603 @default.
- W4320925627 hasConcept C144024400 @default.
- W4320925627 hasConcept C149923435 @default.
- W4320925627 hasConcept C153180895 @default.
- W4320925627 hasConcept C154945302 @default.
- W4320925627 hasConcept C166957645 @default.
- W4320925627 hasConcept C201995342 @default.
- W4320925627 hasConcept C205649164 @default.
- W4320925627 hasConcept C26517878 @default.
- W4320925627 hasConcept C2776151529 @default.
- W4320925627 hasConcept C2776429412 @default.
- W4320925627 hasConcept C2777113093 @default.
- W4320925627 hasConcept C2780156472 @default.
- W4320925627 hasConcept C2780451532 @default.
- W4320925627 hasConcept C2781238097 @default.
- W4320925627 hasConcept C2908647359 @default.
- W4320925627 hasConcept C31972630 @default.
- W4320925627 hasConcept C38652104 @default.
- W4320925627 hasConcept C41008148 @default.
- W4320925627 hasConceptScore W4320925627C108583219 @default.
- W4320925627 hasConceptScore W4320925627C115961682 @default.
- W4320925627 hasConceptScore W4320925627C119857082 @default.
- W4320925627 hasConceptScore W4320925627C127413603 @default.
- W4320925627 hasConceptScore W4320925627C144024400 @default.
- W4320925627 hasConceptScore W4320925627C149923435 @default.
- W4320925627 hasConceptScore W4320925627C153180895 @default.
- W4320925627 hasConceptScore W4320925627C154945302 @default.
- W4320925627 hasConceptScore W4320925627C166957645 @default.
- W4320925627 hasConceptScore W4320925627C201995342 @default.
- W4320925627 hasConceptScore W4320925627C205649164 @default.
- W4320925627 hasConceptScore W4320925627C26517878 @default.
- W4320925627 hasConceptScore W4320925627C2776151529 @default.
- W4320925627 hasConceptScore W4320925627C2776429412 @default.
- W4320925627 hasConceptScore W4320925627C2777113093 @default.
- W4320925627 hasConceptScore W4320925627C2780156472 @default.
- W4320925627 hasConceptScore W4320925627C2780451532 @default.
- W4320925627 hasConceptScore W4320925627C2781238097 @default.
- W4320925627 hasConceptScore W4320925627C2908647359 @default.
- W4320925627 hasConceptScore W4320925627C31972630 @default.