Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321021227> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4321021227 endingPage "15" @default.
- W4321021227 startingPage "1" @default.
- W4321021227 abstract "Feature selection is an effective dimensionality reduction technique, which can speed up an algorithm and improve model performance such as predictive accuracy and result comprehensibility. The study of selecting label-specific features for each class label has attracted considerable attention since each class label might be determined by some inherent characteristics, where precise label information is required to guide label-specific feature selection. However, obtaining noise-free labels is quite difficult and impractical. In reality, each instance is often annotated by a candidate label set that comprises multiple ground-truth labels and other false-positive labels, termed partial multilabel (PML) learning scenario. Here, false-positive labels concealed in a candidate label set might induce the selection of false label-specific features while masking the intrinsic label correlations, which misleads the selection of relevant features and compromises the selection performance. To address this issue, a novel two-stage partial multilabel feature selection (PMLFS) approach is proposed, which elicits credible labels to guide accurate label-specific feature selection. First, the label confidence matrix is learned to help elicit ground-truth labels from the candidate label set via the label structure reconstruction strategy, each element of which indicates how likely a class label is ground truth. After that, based on distilled credible labels, a joint selection model, including label-specific feature learner and common feature learner, is designed to learn accurate label-specific features to each class label and common features for all class labels. Besides, label correlations are fused into the features selection process to facilitate the generation of an optimal feature subset. Extensive experimental results clearly validate the superiority of the proposed approach." @default.
- W4321021227 created "2023-02-17" @default.
- W4321021227 creator A5040071008 @default.
- W4321021227 creator A5042610567 @default.
- W4321021227 creator A5051514098 @default.
- W4321021227 creator A5072317258 @default.
- W4321021227 creator A5077954558 @default.
- W4321021227 date "2023-01-01" @default.
- W4321021227 modified "2023-10-18" @default.
- W4321021227 title "Learning Accurate Label-Specific Features From Partially Multilabeled Data" @default.
- W4321021227 doi "https://doi.org/10.1109/tnnls.2023.3241921" @default.
- W4321021227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37022887" @default.
- W4321021227 hasPublicationYear "2023" @default.
- W4321021227 type Work @default.
- W4321021227 citedByCount "0" @default.
- W4321021227 crossrefType "journal-article" @default.
- W4321021227 hasAuthorship W4321021227A5040071008 @default.
- W4321021227 hasAuthorship W4321021227A5042610567 @default.
- W4321021227 hasAuthorship W4321021227A5051514098 @default.
- W4321021227 hasAuthorship W4321021227A5072317258 @default.
- W4321021227 hasAuthorship W4321021227A5077954558 @default.
- W4321021227 hasConcept C119857082 @default.
- W4321021227 hasConcept C138885662 @default.
- W4321021227 hasConcept C142362112 @default.
- W4321021227 hasConcept C146849305 @default.
- W4321021227 hasConcept C148483581 @default.
- W4321021227 hasConcept C153180895 @default.
- W4321021227 hasConcept C153349607 @default.
- W4321021227 hasConcept C154945302 @default.
- W4321021227 hasConcept C177264268 @default.
- W4321021227 hasConcept C199360897 @default.
- W4321021227 hasConcept C2776401178 @default.
- W4321021227 hasConcept C2776482837 @default.
- W4321021227 hasConcept C2777212361 @default.
- W4321021227 hasConcept C2777402240 @default.
- W4321021227 hasConcept C41008148 @default.
- W4321021227 hasConcept C41895202 @default.
- W4321021227 hasConcept C70518039 @default.
- W4321021227 hasConcept C81917197 @default.
- W4321021227 hasConceptScore W4321021227C119857082 @default.
- W4321021227 hasConceptScore W4321021227C138885662 @default.
- W4321021227 hasConceptScore W4321021227C142362112 @default.
- W4321021227 hasConceptScore W4321021227C146849305 @default.
- W4321021227 hasConceptScore W4321021227C148483581 @default.
- W4321021227 hasConceptScore W4321021227C153180895 @default.
- W4321021227 hasConceptScore W4321021227C153349607 @default.
- W4321021227 hasConceptScore W4321021227C154945302 @default.
- W4321021227 hasConceptScore W4321021227C177264268 @default.
- W4321021227 hasConceptScore W4321021227C199360897 @default.
- W4321021227 hasConceptScore W4321021227C2776401178 @default.
- W4321021227 hasConceptScore W4321021227C2776482837 @default.
- W4321021227 hasConceptScore W4321021227C2777212361 @default.
- W4321021227 hasConceptScore W4321021227C2777402240 @default.
- W4321021227 hasConceptScore W4321021227C41008148 @default.
- W4321021227 hasConceptScore W4321021227C41895202 @default.
- W4321021227 hasConceptScore W4321021227C70518039 @default.
- W4321021227 hasConceptScore W4321021227C81917197 @default.
- W4321021227 hasFunder F4320321001 @default.
- W4321021227 hasLocation W43210212271 @default.
- W4321021227 hasLocation W43210212272 @default.
- W4321021227 hasOpenAccess W4321021227 @default.
- W4321021227 hasPrimaryLocation W43210212271 @default.
- W4321021227 hasRelatedWork W1996267020 @default.
- W4321021227 hasRelatedWork W2108104958 @default.
- W4321021227 hasRelatedWork W2144653557 @default.
- W4321021227 hasRelatedWork W2347213675 @default.
- W4321021227 hasRelatedWork W2349378567 @default.
- W4321021227 hasRelatedWork W2350494610 @default.
- W4321021227 hasRelatedWork W2374344280 @default.
- W4321021227 hasRelatedWork W2385233088 @default.
- W4321021227 hasRelatedWork W4293525103 @default.
- W4321021227 hasRelatedWork W2345184372 @default.
- W4321021227 isParatext "false" @default.
- W4321021227 isRetracted "false" @default.
- W4321021227 workType "article" @default.