Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321021942> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4321021942 endingPage "17001" @default.
- W4321021942 startingPage "16994" @default.
- W4321021942 abstract "In order to solve the problem of data sparsity and credibility in collaborative filtering, a recommendation system based on sentiment analysis and matrix factorization (SAMF) is proposed in this paper, which uses topic model and deep learning technology to fully mine the implicit information in reviews to improve the rating matrix and assist recommendation. Firstly, user topic distribution and item topic distribution are generated from reviews(consisting user reviews and item reviews) through LDA(Latent Dirichlet Allocation). The user feature matrix and item feature matrix are created based on topic probability. Secondly, user feature matrix and item feature matrix are integrated to create user-item preference matrix. Thirdly, the user-item preference matrix and the original rating matrix are integrated to create the user-item rating matrix. Fourthly, BERT(Bidirectional Encoder Representation from Transformers) is used to quantify the sentiment information contained in the reviews and integrate the sentiment information with the user-item rating matrix, to modify and update the user-item rating matrix. Finally, the updated user-item rating matrix is used to achieve rating prediction and Top-N recommendation. Experiments on Amazon datasets demonstrates that the proposed SAMF has better recommendation performance than other classical algorithms." @default.
- W4321021942 created "2023-02-17" @default.
- W4321021942 creator A5016311643 @default.
- W4321021942 creator A5081723565 @default.
- W4321021942 date "2023-01-01" @default.
- W4321021942 modified "2023-10-10" @default.
- W4321021942 title "Recommendation System Based on Deep Sentiment Analysis and Matrix Factorization" @default.
- W4321021942 cites W1479822238 @default.
- W4321021942 cites W1720514416 @default.
- W4321021942 cites W1853953842 @default.
- W4321021942 cites W1902027874 @default.
- W4321021942 cites W1994389483 @default.
- W4321021942 cites W2042281163 @default.
- W4321021942 cites W2054141820 @default.
- W4321021942 cites W2130650317 @default.
- W4321021942 cites W2157881433 @default.
- W4321021942 cites W2749348810 @default.
- W4321021942 cites W2769690594 @default.
- W4321021942 cites W2787884921 @default.
- W4321021942 cites W2889526258 @default.
- W4321021942 cites W2892868562 @default.
- W4321021942 cites W2945034577 @default.
- W4321021942 cites W3096677679 @default.
- W4321021942 cites W3134258221 @default.
- W4321021942 cites W4200570967 @default.
- W4321021942 cites W4220975012 @default.
- W4321021942 cites W4229336765 @default.
- W4321021942 cites W4285743492 @default.
- W4321021942 doi "https://doi.org/10.1109/access.2023.3246060" @default.
- W4321021942 hasPublicationYear "2023" @default.
- W4321021942 type Work @default.
- W4321021942 citedByCount "0" @default.
- W4321021942 crossrefType "journal-article" @default.
- W4321021942 hasAuthorship W4321021942A5016311643 @default.
- W4321021942 hasAuthorship W4321021942A5081723565 @default.
- W4321021942 hasBestOaLocation W43210219421 @default.
- W4321021942 hasConcept C119857082 @default.
- W4321021942 hasConcept C121332964 @default.
- W4321021942 hasConcept C124101348 @default.
- W4321021942 hasConcept C138885662 @default.
- W4321021942 hasConcept C154945302 @default.
- W4321021942 hasConcept C158693339 @default.
- W4321021942 hasConcept C171686336 @default.
- W4321021942 hasConcept C21569690 @default.
- W4321021942 hasConcept C23123220 @default.
- W4321021942 hasConcept C2776401178 @default.
- W4321021942 hasConcept C41008148 @default.
- W4321021942 hasConcept C41895202 @default.
- W4321021942 hasConcept C42355184 @default.
- W4321021942 hasConcept C500882744 @default.
- W4321021942 hasConcept C557471498 @default.
- W4321021942 hasConcept C62520636 @default.
- W4321021942 hasConceptScore W4321021942C119857082 @default.
- W4321021942 hasConceptScore W4321021942C121332964 @default.
- W4321021942 hasConceptScore W4321021942C124101348 @default.
- W4321021942 hasConceptScore W4321021942C138885662 @default.
- W4321021942 hasConceptScore W4321021942C154945302 @default.
- W4321021942 hasConceptScore W4321021942C158693339 @default.
- W4321021942 hasConceptScore W4321021942C171686336 @default.
- W4321021942 hasConceptScore W4321021942C21569690 @default.
- W4321021942 hasConceptScore W4321021942C23123220 @default.
- W4321021942 hasConceptScore W4321021942C2776401178 @default.
- W4321021942 hasConceptScore W4321021942C41008148 @default.
- W4321021942 hasConceptScore W4321021942C41895202 @default.
- W4321021942 hasConceptScore W4321021942C42355184 @default.
- W4321021942 hasConceptScore W4321021942C500882744 @default.
- W4321021942 hasConceptScore W4321021942C557471498 @default.
- W4321021942 hasConceptScore W4321021942C62520636 @default.
- W4321021942 hasFunder F4320336350 @default.
- W4321021942 hasLocation W43210219421 @default.
- W4321021942 hasOpenAccess W4321021942 @default.
- W4321021942 hasPrimaryLocation W43210219421 @default.
- W4321021942 hasRelatedWork W1484355083 @default.
- W4321021942 hasRelatedWork W2098758514 @default.
- W4321021942 hasRelatedWork W2170391450 @default.
- W4321021942 hasRelatedWork W2207653751 @default.
- W4321021942 hasRelatedWork W2735929803 @default.
- W4321021942 hasRelatedWork W2769501189 @default.
- W4321021942 hasRelatedWork W2888805565 @default.
- W4321021942 hasRelatedWork W4220714703 @default.
- W4321021942 hasRelatedWork W4312773271 @default.
- W4321021942 hasRelatedWork W4315588616 @default.
- W4321021942 hasVolume "11" @default.
- W4321021942 isParatext "false" @default.
- W4321021942 isRetracted "false" @default.
- W4321021942 workType "article" @default.