Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321073623> ?p ?o ?g. }
- W4321073623 endingPage "109098" @default.
- W4321073623 startingPage "109098" @default.
- W4321073623 abstract "Supply chain responsiveness and Big Data Analytics (BDA) have incited an ample amount of interest in academia and among practitioners. This work is concerned with improving responsiveness in supply chain networks by extending production capacity to cope with changes and variations in demand. BDA helps researchers make sense of the current challenges of data: high volume, high velocity, and high variety. In this work, we will look at sales data and at large warehouses, which envelop all the said three characteristics of Big Data (BD). This is quite important as demand market data is increasingly shared with supply chain managers. Here, a working architecture is introduced to handle the challenges of BD. The work uses a neural network to detect patterns within the demand. The work combines deep learning with nonlinear programming to enable flexibility at supply chain production facilities to respond to the forecasted demand. The parameters in the neural network are analyzed and studied for each different product type. We see significant prediction improvements when the parameters are better tuned. Further, the work introduces a BD architecture that automates the acquisition of the data, data mining, and the storage of input and output files. Overall, the work utilizes a gradient search method, a genetic algorithm, ARIMA, a deep learning algorithm, and a mixed-integer nonlinear program." @default.
- W4321073623 created "2023-02-17" @default.
- W4321073623 creator A5006226225 @default.
- W4321073623 creator A5016701351 @default.
- W4321073623 creator A5022782442 @default.
- W4321073623 date "2023-04-01" @default.
- W4321073623 modified "2023-09-27" @default.
- W4321073623 title "Big data analytics in flexible supply chain networks" @default.
- W4321073623 cites W1165617247 @default.
- W4321073623 cites W1423872990 @default.
- W4321073623 cites W1840946838 @default.
- W4321073623 cites W1968029308 @default.
- W4321073623 cites W1969536542 @default.
- W4321073623 cites W1980462675 @default.
- W4321073623 cites W2011227258 @default.
- W4321073623 cites W2034893104 @default.
- W4321073623 cites W2043364805 @default.
- W4321073623 cites W2046486420 @default.
- W4321073623 cites W2068999177 @default.
- W4321073623 cites W2070854196 @default.
- W4321073623 cites W2070986256 @default.
- W4321073623 cites W2087936817 @default.
- W4321073623 cites W2091143067 @default.
- W4321073623 cites W2095442792 @default.
- W4321073623 cites W2095477183 @default.
- W4321073623 cites W2100311354 @default.
- W4321073623 cites W2128674696 @default.
- W4321073623 cites W2141975087 @default.
- W4321073623 cites W2154451713 @default.
- W4321073623 cites W2163351091 @default.
- W4321073623 cites W2166797227 @default.
- W4321073623 cites W2175366937 @default.
- W4321073623 cites W2221192829 @default.
- W4321073623 cites W2293068345 @default.
- W4321073623 cites W2302800291 @default.
- W4321073623 cites W2308777257 @default.
- W4321073623 cites W2335636126 @default.
- W4321073623 cites W2335879710 @default.
- W4321073623 cites W2403226644 @default.
- W4321073623 cites W2468048485 @default.
- W4321073623 cites W2482017365 @default.
- W4321073623 cites W2482896200 @default.
- W4321073623 cites W2558783391 @default.
- W4321073623 cites W2604134773 @default.
- W4321073623 cites W2613011363 @default.
- W4321073623 cites W2727459416 @default.
- W4321073623 cites W2766092229 @default.
- W4321073623 cites W2805593386 @default.
- W4321073623 cites W2964185543 @default.
- W4321073623 cites W2979952329 @default.
- W4321073623 cites W3121331425 @default.
- W4321073623 cites W3123973098 @default.
- W4321073623 cites W2517267738 @default.
- W4321073623 doi "https://doi.org/10.1016/j.cie.2023.109098" @default.
- W4321073623 hasPublicationYear "2023" @default.
- W4321073623 type Work @default.
- W4321073623 citedByCount "0" @default.
- W4321073623 crossrefType "journal-article" @default.
- W4321073623 hasAuthorship W4321073623A5006226225 @default.
- W4321073623 hasAuthorship W4321073623A5016701351 @default.
- W4321073623 hasAuthorship W4321073623A5022782442 @default.
- W4321073623 hasConcept C105795698 @default.
- W4321073623 hasConcept C108713360 @default.
- W4321073623 hasConcept C119857082 @default.
- W4321073623 hasConcept C121332964 @default.
- W4321073623 hasConcept C123657996 @default.
- W4321073623 hasConcept C124101348 @default.
- W4321073623 hasConcept C127413603 @default.
- W4321073623 hasConcept C135572916 @default.
- W4321073623 hasConcept C13736549 @default.
- W4321073623 hasConcept C139719470 @default.
- W4321073623 hasConcept C142362112 @default.
- W4321073623 hasConcept C144133560 @default.
- W4321073623 hasConcept C151406439 @default.
- W4321073623 hasConcept C153349607 @default.
- W4321073623 hasConcept C154945302 @default.
- W4321073623 hasConcept C162324750 @default.
- W4321073623 hasConcept C162853370 @default.
- W4321073623 hasConcept C18762648 @default.
- W4321073623 hasConcept C20556612 @default.
- W4321073623 hasConcept C24338571 @default.
- W4321073623 hasConcept C2522767166 @default.
- W4321073623 hasConcept C2778348673 @default.
- W4321073623 hasConcept C2778397037 @default.
- W4321073623 hasConcept C2780598303 @default.
- W4321073623 hasConcept C33923547 @default.
- W4321073623 hasConcept C41008148 @default.
- W4321073623 hasConcept C44104985 @default.
- W4321073623 hasConcept C50644808 @default.
- W4321073623 hasConcept C62520636 @default.
- W4321073623 hasConcept C75684735 @default.
- W4321073623 hasConcept C78519656 @default.
- W4321073623 hasConcept C79158427 @default.
- W4321073623 hasConceptScore W4321073623C105795698 @default.
- W4321073623 hasConceptScore W4321073623C108713360 @default.
- W4321073623 hasConceptScore W4321073623C119857082 @default.
- W4321073623 hasConceptScore W4321073623C121332964 @default.
- W4321073623 hasConceptScore W4321073623C123657996 @default.