Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321073670> ?p ?o ?g. }
- W4321073670 endingPage "119947" @default.
- W4321073670 startingPage "119947" @default.
- W4321073670 abstract "The difference between age predicted using anatomical brain scans and chronological age, i.e., the brain-age delta, provides a proxy for atypical aging. Various data representations and machine learning (ML) algorithms have been used for brain-age estimation. However, how these choices compare on performance criteria important for real-world applications, such as; (1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest reliability, and (4) longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of 16 feature representations derived from gray matter (GM) images and eight ML algorithms with diverse inductive biases. Using four large neuroimaging databases covering the adult lifespan (total N = 2953, 18–88 years), we followed a systematic model selection procedure by sequentially applying stringent criteria. The 128 workflows showed a within-dataset mean absolute error (MAE) between 4.73–8.38 years, from which 32 broadly sampled workflows showed a cross-dataset MAE between 5.23–8.98 years. The test-retest reliability and longitudinal consistency of the top 10 workflows were comparable. The choice of feature representation and the ML algorithm both affected the performance. Specifically, voxel-wise feature spaces (smoothed and resampled), with and without principal components analysis, with non-linear and kernel-based ML algorithms performed well. Strikingly, the correlation of brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset predictions. Application of the best-performing workflow on the ADNI sample showed a significantly higher brain-age delta in Alzheimer's and mild cognitive impairment patients compared to healthy controls. However, in the presence of age bias, the delta estimates in the patients varied depending on the sample used for bias correction. Taken together, brain-age shows promise, but further evaluation and improvements are needed for its real-world application." @default.
- W4321073670 created "2023-02-17" @default.
- W4321073670 creator A5007313280 @default.
- W4321073670 creator A5020230795 @default.
- W4321073670 creator A5026460417 @default.
- W4321073670 creator A5057689854 @default.
- W4321073670 creator A5083494075 @default.
- W4321073670 creator A5087917940 @default.
- W4321073670 date "2023-04-01" @default.
- W4321073670 modified "2023-10-16" @default.
- W4321073670 title "Brain-age prediction: A systematic comparison of machine learning workflows" @default.
- W4321073670 cites W1097741600 @default.
- W4321073670 cites W1824528708 @default.
- W4321073670 cites W1968135525 @default.
- W4321073670 cites W1980553836 @default.
- W4321073670 cites W1989217296 @default.
- W4321073670 cites W2008152557 @default.
- W4321073670 cites W2009448627 @default.
- W4321073670 cites W2024524081 @default.
- W4321073670 cites W2067456724 @default.
- W4321073670 cites W2078524519 @default.
- W4321073670 cites W2081164888 @default.
- W4321073670 cites W2093745477 @default.
- W4321073670 cites W2097137621 @default.
- W4321073670 cites W2108103428 @default.
- W4321073670 cites W2113127248 @default.
- W4321073670 cites W2116967320 @default.
- W4321073670 cites W2117398004 @default.
- W4321073670 cites W2118421222 @default.
- W4321073670 cites W2122328291 @default.
- W4321073670 cites W2137229374 @default.
- W4321073670 cites W2155298532 @default.
- W4321073670 cites W2157856429 @default.
- W4321073670 cites W2255371896 @default.
- W4321073670 cites W2265858291 @default.
- W4321073670 cites W2313339984 @default.
- W4321073670 cites W2335229748 @default.
- W4321073670 cites W2402346616 @default.
- W4321073670 cites W2421101021 @default.
- W4321073670 cites W2467047798 @default.
- W4321073670 cites W2579617530 @default.
- W4321073670 cites W2602552939 @default.
- W4321073670 cites W2736045761 @default.
- W4321073670 cites W2787228688 @default.
- W4321073670 cites W2807222878 @default.
- W4321073670 cites W2927417524 @default.
- W4321073670 cites W2929665219 @default.
- W4321073670 cites W2951042025 @default.
- W4321073670 cites W2951479191 @default.
- W4321073670 cites W2951617899 @default.
- W4321073670 cites W2952824318 @default.
- W4321073670 cites W2962989546 @default.
- W4321073670 cites W2963389298 @default.
- W4321073670 cites W2970765071 @default.
- W4321073670 cites W2976981404 @default.
- W4321073670 cites W2979650665 @default.
- W4321073670 cites W2980541791 @default.
- W4321073670 cites W2984423913 @default.
- W4321073670 cites W2995808388 @default.
- W4321073670 cites W2996397878 @default.
- W4321073670 cites W2999319035 @default.
- W4321073670 cites W3007648700 @default.
- W4321073670 cites W3010484279 @default.
- W4321073670 cites W3015236716 @default.
- W4321073670 cites W3016088911 @default.
- W4321073670 cites W3037286432 @default.
- W4321073670 cites W3080221164 @default.
- W4321073670 cites W3092783643 @default.
- W4321073670 cites W3120824927 @default.
- W4321073670 cites W3126007897 @default.
- W4321073670 cites W3126188706 @default.
- W4321073670 cites W3129030047 @default.
- W4321073670 cites W3135539146 @default.
- W4321073670 cites W3138510088 @default.
- W4321073670 cites W3164178104 @default.
- W4321073670 cites W3184635293 @default.
- W4321073670 cites W3194973925 @default.
- W4321073670 cites W3203395588 @default.
- W4321073670 cites W4210770237 @default.
- W4321073670 cites W4220800641 @default.
- W4321073670 cites W4233168029 @default.
- W4321073670 cites W4233994114 @default.
- W4321073670 cites W4282822545 @default.
- W4321073670 cites W4285386077 @default.
- W4321073670 cites W4294541781 @default.
- W4321073670 cites W4296702992 @default.
- W4321073670 cites W4317889751 @default.
- W4321073670 doi "https://doi.org/10.1016/j.neuroimage.2023.119947" @default.
- W4321073670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36801372" @default.
- W4321073670 hasPublicationYear "2023" @default.
- W4321073670 type Work @default.
- W4321073670 citedByCount "12" @default.
- W4321073670 countsByYear W43210736702022 @default.
- W4321073670 countsByYear W43210736702023 @default.
- W4321073670 crossrefType "journal-article" @default.
- W4321073670 hasAuthorship W4321073670A5007313280 @default.
- W4321073670 hasAuthorship W4321073670A5020230795 @default.
- W4321073670 hasAuthorship W4321073670A5026460417 @default.