Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321079244> ?p ?o ?g. }
- W4321079244 endingPage "11" @default.
- W4321079244 startingPage "1" @default.
- W4321079244 abstract "Diabetes mellitus is a disease with no cure that can cause complications and even death. Moreover, over time, it will lead to chronic complications. Predictive models have been used to identify people with a tendency to develop diabetes mellitus. At the same time, there is limited information regarding the chronic complications of patients with diabetes. Our study is aimed at creating a machine-learning model that will be able to identify the risk factors of a diabetic patient developing chronic complications such as amputations, myocardial infarction, stroke, nephropathy, and retinopathy. The design is a national nested case-control study with 63,776 patients and 215 predictors with four years of data. Using an XGBoost model, the prediction of chronic complications has an AUC of 84%, and the model has identified the risk factors for chronic complications in patients with diabetes. According to the analysis, the most crucial risk factors based on SHAP values (Shapley additive explanations) are continued management, metformin treatment, age between 68 and 104 years, nutrition consultation, and treatment adherence. But we highlight two exciting findings. The first is a reaffirmation that high blood pressure figures across patients with diabetes without hypertension become a significant risk factor at <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mtext>diastolic</mtext> <mo>></mo> <mn>70</mn> <mtext> </mtext> <mtext>mmHg</mtext> </math> (OR: 1.095, 95% CI: 1.078-1.113) or <math xmlns=http://www.w3.org/1998/Math/MathML id=M2> <mtext>systolic</mtext> <mo>></mo> <mn>120</mn> <mtext> </mtext> <mtext>mmHg</mtext> </math> (OR: 1.147, 95% CI: 1.124-1.171). Furthermore, people with diabetes with a <math xmlns=http://www.w3.org/1998/Math/MathML id=M3> <mtext>BMI</mtext> <mo>></mo> <mn>32</mn> </math> (overall obesity) (OR: 0.816, 95% CI: 0.8-0.833) have a statistically significant protective factor, which the paradox of obesity may explain. In conclusion, the results we have obtained show that artificial intelligence is a powerful and feasible tool to use for this type of study. However, we suggest that more studies be conducted to verify and elaborate upon our findings." @default.
- W4321079244 created "2023-02-17" @default.
- W4321079244 creator A5003513649 @default.
- W4321079244 creator A5006294627 @default.
- W4321079244 creator A5013412871 @default.
- W4321079244 creator A5020368412 @default.
- W4321079244 creator A5022866681 @default.
- W4321079244 creator A5028060691 @default.
- W4321079244 creator A5029402302 @default.
- W4321079244 creator A5040722911 @default.
- W4321079244 creator A5042855994 @default.
- W4321079244 creator A5053601980 @default.
- W4321079244 creator A5059177177 @default.
- W4321079244 creator A5070889297 @default.
- W4321079244 creator A5077523242 @default.
- W4321079244 creator A5087835251 @default.
- W4321079244 date "2023-02-16" @default.
- W4321079244 modified "2023-10-18" @default.
- W4321079244 title "Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective" @default.
- W4321079244 cites W1969865047 @default.
- W4321079244 cites W1993119975 @default.
- W4321079244 cites W2102785545 @default.
- W4321079244 cites W2106070309 @default.
- W4321079244 cites W2118847041 @default.
- W4321079244 cites W2126125759 @default.
- W4321079244 cites W2130373985 @default.
- W4321079244 cites W2141377403 @default.
- W4321079244 cites W2152034819 @default.
- W4321079244 cites W2159806894 @default.
- W4321079244 cites W2163633221 @default.
- W4321079244 cites W2168261002 @default.
- W4321079244 cites W2177870565 @default.
- W4321079244 cites W2178611307 @default.
- W4321079244 cites W2236731268 @default.
- W4321079244 cites W2267927466 @default.
- W4321079244 cites W2302501749 @default.
- W4321079244 cites W2497146091 @default.
- W4321079244 cites W2509704354 @default.
- W4321079244 cites W2600585046 @default.
- W4321079244 cites W2612292012 @default.
- W4321079244 cites W2760667611 @default.
- W4321079244 cites W2804079537 @default.
- W4321079244 cites W2913275455 @default.
- W4321079244 cites W2921026218 @default.
- W4321079244 cites W2934399013 @default.
- W4321079244 cites W2935098703 @default.
- W4321079244 cites W2943491685 @default.
- W4321079244 cites W2949554208 @default.
- W4321079244 cites W2950149986 @default.
- W4321079244 cites W2962760173 @default.
- W4321079244 cites W2981121978 @default.
- W4321079244 cites W2982197252 @default.
- W4321079244 cites W2983753125 @default.
- W4321079244 cites W2985452234 @default.
- W4321079244 cites W2992832415 @default.
- W4321079244 cites W2996705655 @default.
- W4321079244 cites W2997493014 @default.
- W4321079244 cites W2999615587 @default.
- W4321079244 cites W3003394528 @default.
- W4321079244 cites W3004022591 @default.
- W4321079244 cites W3027061345 @default.
- W4321079244 cites W3174622256 @default.
- W4321079244 cites W3201285450 @default.
- W4321079244 cites W4213066553 @default.
- W4321079244 cites W4313470114 @default.
- W4321079244 cites W92486268 @default.
- W4321079244 doi "https://doi.org/10.1155/2023/8898958" @default.
- W4321079244 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36846513" @default.
- W4321079244 hasPublicationYear "2023" @default.
- W4321079244 type Work @default.
- W4321079244 citedByCount "0" @default.
- W4321079244 crossrefType "journal-article" @default.
- W4321079244 hasAuthorship W4321079244A5003513649 @default.
- W4321079244 hasAuthorship W4321079244A5006294627 @default.
- W4321079244 hasAuthorship W4321079244A5013412871 @default.
- W4321079244 hasAuthorship W4321079244A5020368412 @default.
- W4321079244 hasAuthorship W4321079244A5022866681 @default.
- W4321079244 hasAuthorship W4321079244A5028060691 @default.
- W4321079244 hasAuthorship W4321079244A5029402302 @default.
- W4321079244 hasAuthorship W4321079244A5040722911 @default.
- W4321079244 hasAuthorship W4321079244A5042855994 @default.
- W4321079244 hasAuthorship W4321079244A5053601980 @default.
- W4321079244 hasAuthorship W4321079244A5059177177 @default.
- W4321079244 hasAuthorship W4321079244A5070889297 @default.
- W4321079244 hasAuthorship W4321079244A5077523242 @default.
- W4321079244 hasAuthorship W4321079244A5087835251 @default.
- W4321079244 hasBestOaLocation W43210792441 @default.
- W4321079244 hasConcept C126322002 @default.
- W4321079244 hasConcept C134018914 @default.
- W4321079244 hasConcept C2779829184 @default.
- W4321079244 hasConcept C2779922275 @default.
- W4321079244 hasConcept C2780323712 @default.
- W4321079244 hasConcept C2781184683 @default.
- W4321079244 hasConcept C500558357 @default.
- W4321079244 hasConcept C50440223 @default.
- W4321079244 hasConcept C555293320 @default.
- W4321079244 hasConcept C71924100 @default.
- W4321079244 hasConcept C84393581 @default.