Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321089622> ?p ?o ?g. }
- W4321089622 endingPage "32" @default.
- W4321089622 startingPage "1" @default.
- W4321089622 abstract "Extracting and analysing meaning-related information from natural language data has attracted the attention of researchers in various fields, such as natural language processing, corpus linguistics, information retrieval, and data science. An important aspect of such automatic information extraction and analysis is the annotation of language data using semantic tagging tools. Different semantic tagging tools have been designed to carry out various levels of semantic analysis, for instance, named entity recognition and disambiguation, sentiment analysis, word sense disambiguation, content analysis, and semantic role labelling. Common to all of these tasks, in the supervised setting, is the requirement for a manually semantically annotated corpus, which acts as a knowledge base from which to train and test potential word and phrase-level sense annotations. Many benchmark corpora have been developed for various semantic tagging tasks, but most are for English and other European languages. There is a dearth of semantically annotated corpora for the Urdu language, which is widely spoken and used around the world. To fill this gap, this study presents a large benchmark corpus and methods for the semantic tagging task for the Urdu language. The proposed corpus contains 8,000 tokens in the following domains or genres: news, social media, Wikipedia, and historical text (each domain having 2K tokens). The corpus has been manually annotated with 21 major semantic fields and 232 sub-fields with the USAS (UCREL Semantic Analysis System) semantic taxonomy which provides a comprehensive set of semantic fields for coarse-grained annotation. Each word in our proposed corpus has been annotated with at least one and up to nine semantic field tags to provide a detailed semantic analysis of the language data, which allowed us to treat the problem of semantic tagging as a supervised multi-target classification task. To demonstrate how our proposed corpus can be used for the development and evaluation of Urdu semantic tagging methods, we extracted local, topical and semantic features from the proposed corpus and applied seven different supervised multi-target classifiers to them. Results show an accuracy of 94% on our proposed corpus which is free and publicly available to download." @default.
- W4321089622 created "2023-02-17" @default.
- W4321089622 creator A5005027058 @default.
- W4321089622 creator A5058785189 @default.
- W4321089622 creator A5075488653 @default.
- W4321089622 date "2023-06-17" @default.
- W4321089622 modified "2023-09-26" @default.
- W4321089622 title "Semantic Tagging for the Urdu Language: Annotated Corpus and Multi-Target Classification Methods" @default.
- W4321089622 cites W1495836335 @default.
- W4321089622 cites W1551268210 @default.
- W4321089622 cites W1596967103 @default.
- W4321089622 cites W1880262756 @default.
- W4321089622 cites W1967542092 @default.
- W4321089622 cites W1977182536 @default.
- W4321089622 cites W1985912861 @default.
- W4321089622 cites W1994180792 @default.
- W4321089622 cites W1999954155 @default.
- W4321089622 cites W2005329858 @default.
- W4321089622 cites W2006462052 @default.
- W4321089622 cites W2029517229 @default.
- W4321089622 cites W2058349743 @default.
- W4321089622 cites W2077656994 @default.
- W4321089622 cites W2100495367 @default.
- W4321089622 cites W2101837219 @default.
- W4321089622 cites W2102381086 @default.
- W4321089622 cites W2114315281 @default.
- W4321089622 cites W2116555906 @default.
- W4321089622 cites W2119656664 @default.
- W4321089622 cites W2120699290 @default.
- W4321089622 cites W2127293965 @default.
- W4321089622 cites W2127358574 @default.
- W4321089622 cites W2128354940 @default.
- W4321089622 cites W2156468487 @default.
- W4321089622 cites W2159882563 @default.
- W4321089622 cites W22182018 @default.
- W4321089622 cites W2325637306 @default.
- W4321089622 cites W2398778769 @default.
- W4321089622 cites W2428981601 @default.
- W4321089622 cites W2436001372 @default.
- W4321089622 cites W2614261290 @default.
- W4321089622 cites W2614673973 @default.
- W4321089622 cites W2676554382 @default.
- W4321089622 cites W2936459239 @default.
- W4321089622 cites W3124063403 @default.
- W4321089622 cites W4206707056 @default.
- W4321089622 cites W4211125870 @default.
- W4321089622 cites W4242626930 @default.
- W4321089622 cites W4244355702 @default.
- W4321089622 cites W4294214983 @default.
- W4321089622 doi "https://doi.org/10.1145/3582496" @default.
- W4321089622 hasPublicationYear "2023" @default.
- W4321089622 type Work @default.
- W4321089622 citedByCount "0" @default.
- W4321089622 crossrefType "journal-article" @default.
- W4321089622 hasAuthorship W4321089622A5005027058 @default.
- W4321089622 hasAuthorship W4321089622A5058785189 @default.
- W4321089622 hasAuthorship W4321089622A5075488653 @default.
- W4321089622 hasBestOaLocation W43210896221 @default.
- W4321089622 hasConcept C130318100 @default.
- W4321089622 hasConcept C154945302 @default.
- W4321089622 hasConcept C162324750 @default.
- W4321089622 hasConcept C173862523 @default.
- W4321089622 hasConcept C187736073 @default.
- W4321089622 hasConcept C204321447 @default.
- W4321089622 hasConcept C2129575 @default.
- W4321089622 hasConcept C23123220 @default.
- W4321089622 hasConcept C2776321320 @default.
- W4321089622 hasConcept C2777530160 @default.
- W4321089622 hasConcept C2780451532 @default.
- W4321089622 hasConcept C41008148 @default.
- W4321089622 hasConcept C44572571 @default.
- W4321089622 hasConcept C511149849 @default.
- W4321089622 hasConcept C67277372 @default.
- W4321089622 hasConcept C6881194 @default.
- W4321089622 hasConceptScore W4321089622C130318100 @default.
- W4321089622 hasConceptScore W4321089622C154945302 @default.
- W4321089622 hasConceptScore W4321089622C162324750 @default.
- W4321089622 hasConceptScore W4321089622C173862523 @default.
- W4321089622 hasConceptScore W4321089622C187736073 @default.
- W4321089622 hasConceptScore W4321089622C204321447 @default.
- W4321089622 hasConceptScore W4321089622C2129575 @default.
- W4321089622 hasConceptScore W4321089622C23123220 @default.
- W4321089622 hasConceptScore W4321089622C2776321320 @default.
- W4321089622 hasConceptScore W4321089622C2777530160 @default.
- W4321089622 hasConceptScore W4321089622C2780451532 @default.
- W4321089622 hasConceptScore W4321089622C41008148 @default.
- W4321089622 hasConceptScore W4321089622C44572571 @default.
- W4321089622 hasConceptScore W4321089622C511149849 @default.
- W4321089622 hasConceptScore W4321089622C67277372 @default.
- W4321089622 hasConceptScore W4321089622C6881194 @default.
- W4321089622 hasIssue "6" @default.
- W4321089622 hasLocation W43210896221 @default.
- W4321089622 hasOpenAccess W4321089622 @default.
- W4321089622 hasPrimaryLocation W43210896221 @default.
- W4321089622 hasRelatedWork W102651279 @default.
- W4321089622 hasRelatedWork W1998393376 @default.
- W4321089622 hasRelatedWork W2376633828 @default.
- W4321089622 hasRelatedWork W2464272265 @default.