Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321093485> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4321093485 endingPage "2540" @default.
- W4321093485 startingPage "2540" @default.
- W4321093485 abstract "Cyclic steam stimulation (CSS) is one of the main offshore heavy oil recovery methods used. Predicting the production of horizontal CSS wells is significant for developing offshore heavy oil reservoirs. Currently, the existing reservoir numerical simulation and analytical models are the two major methods to predict the production of horizontal CSS wells. The reservoir numerical simulation method is tedious and time-consuming, while the analytical models need many assumptions, decreasing models’ accuracy. Therefore, in this study, a novel methodology combining the particle swarm optimization algorithm (PA) and long short-term memory (LM) model was developed to predict the production of horizontal CSS wells. First, a simulation model was established to calculate the cumulative oil production (COP) of horizontal CSS wells under different well, geological, and operational parameters, and then the correlations between the calculated COP and parameters were analyzed by Pearson correlation coefficient to select the input variables and to generate the initial data set. Then, a PA-LM model for the COP of horizontal CSS wells was developed by utilizing the PA to determine the optimal hyperparameters of the LM model. Finally, the accuracy of the PA-LM model was validated by the initial data set and actual production data. The results showed that, compared with the LM model, the mean absolute percentage error (MAPE) of the testing set for the PA-LM model decreased by 4.27%, and the percentage of the paired points in zone A increased by 2.8% in the Clarke error grids. In addition, the MAPEs of the training set for the PA-LM and LM models stabilized at 267 and 304 epochs, respectively. Therefore, the proposed PA-LM model had a higher accuracy, a stronger generalization ability, and a faster convergence rate. The MAPEs of the actual and predicted COP of the wells B1H and B5H by the optimized PA-LM model were 8.66% and 5.93%, respectively, satisfying the requirements in field applications." @default.
- W4321093485 created "2023-02-17" @default.
- W4321093485 creator A5014777126 @default.
- W4321093485 creator A5029135555 @default.
- W4321093485 creator A5037199353 @default.
- W4321093485 creator A5042271603 @default.
- W4321093485 creator A5044432729 @default.
- W4321093485 creator A5062154807 @default.
- W4321093485 creator A5081589298 @default.
- W4321093485 date "2023-02-16" @default.
- W4321093485 modified "2023-10-16" @default.
- W4321093485 title "A Novel Methodology for Predicting the Production of Horizontal CSS Wells in Offshore Heavy Oil Reservoirs Using Particle Swarm Optimized Neural Network" @default.
- W4321093485 cites W2024972158 @default.
- W4321093485 cites W2025815454 @default.
- W4321093485 cites W2050066438 @default.
- W4321093485 cites W2064675550 @default.
- W4321093485 cites W2139268489 @default.
- W4321093485 cites W2277001310 @default.
- W4321093485 cites W2283935063 @default.
- W4321093485 cites W2312222902 @default.
- W4321093485 cites W2318534473 @default.
- W4321093485 cites W2602034649 @default.
- W4321093485 cites W2741425391 @default.
- W4321093485 cites W2800819102 @default.
- W4321093485 cites W2898489217 @default.
- W4321093485 cites W2921167549 @default.
- W4321093485 cites W3004417816 @default.
- W4321093485 cites W3035592557 @default.
- W4321093485 cites W3080457526 @default.
- W4321093485 cites W3111840977 @default.
- W4321093485 cites W4253929648 @default.
- W4321093485 cites W4288885873 @default.
- W4321093485 cites W4296101093 @default.
- W4321093485 doi "https://doi.org/10.3390/app13042540" @default.
- W4321093485 hasPublicationYear "2023" @default.
- W4321093485 type Work @default.
- W4321093485 citedByCount "0" @default.
- W4321093485 crossrefType "journal-article" @default.
- W4321093485 hasAuthorship W4321093485A5014777126 @default.
- W4321093485 hasAuthorship W4321093485A5029135555 @default.
- W4321093485 hasAuthorship W4321093485A5037199353 @default.
- W4321093485 hasAuthorship W4321093485A5042271603 @default.
- W4321093485 hasAuthorship W4321093485A5044432729 @default.
- W4321093485 hasAuthorship W4321093485A5062154807 @default.
- W4321093485 hasAuthorship W4321093485A5081589298 @default.
- W4321093485 hasBestOaLocation W43210934851 @default.
- W4321093485 hasConcept C105795698 @default.
- W4321093485 hasConcept C11413529 @default.
- W4321093485 hasConcept C122383733 @default.
- W4321093485 hasConcept C127413603 @default.
- W4321093485 hasConcept C128990827 @default.
- W4321093485 hasConcept C150217764 @default.
- W4321093485 hasConcept C154945302 @default.
- W4321093485 hasConcept C162284963 @default.
- W4321093485 hasConcept C187320778 @default.
- W4321093485 hasConcept C2778668878 @default.
- W4321093485 hasConcept C2779538338 @default.
- W4321093485 hasConcept C2780092901 @default.
- W4321093485 hasConcept C33923547 @default.
- W4321093485 hasConcept C41008148 @default.
- W4321093485 hasConcept C50644808 @default.
- W4321093485 hasConcept C78762247 @default.
- W4321093485 hasConcept C85617194 @default.
- W4321093485 hasConceptScore W4321093485C105795698 @default.
- W4321093485 hasConceptScore W4321093485C11413529 @default.
- W4321093485 hasConceptScore W4321093485C122383733 @default.
- W4321093485 hasConceptScore W4321093485C127413603 @default.
- W4321093485 hasConceptScore W4321093485C128990827 @default.
- W4321093485 hasConceptScore W4321093485C150217764 @default.
- W4321093485 hasConceptScore W4321093485C154945302 @default.
- W4321093485 hasConceptScore W4321093485C162284963 @default.
- W4321093485 hasConceptScore W4321093485C187320778 @default.
- W4321093485 hasConceptScore W4321093485C2778668878 @default.
- W4321093485 hasConceptScore W4321093485C2779538338 @default.
- W4321093485 hasConceptScore W4321093485C2780092901 @default.
- W4321093485 hasConceptScore W4321093485C33923547 @default.
- W4321093485 hasConceptScore W4321093485C41008148 @default.
- W4321093485 hasConceptScore W4321093485C50644808 @default.
- W4321093485 hasConceptScore W4321093485C78762247 @default.
- W4321093485 hasConceptScore W4321093485C85617194 @default.
- W4321093485 hasIssue "4" @default.
- W4321093485 hasLocation W43210934851 @default.
- W4321093485 hasOpenAccess W4321093485 @default.
- W4321093485 hasPrimaryLocation W43210934851 @default.
- W4321093485 hasRelatedWork W1978748517 @default.
- W4321093485 hasRelatedWork W2188032833 @default.
- W4321093485 hasRelatedWork W2390711150 @default.
- W4321093485 hasRelatedWork W2471744513 @default.
- W4321093485 hasRelatedWork W2898245764 @default.
- W4321093485 hasRelatedWork W2904985375 @default.
- W4321093485 hasRelatedWork W3022960367 @default.
- W4321093485 hasRelatedWork W3048369679 @default.
- W4321093485 hasRelatedWork W4206258478 @default.
- W4321093485 hasRelatedWork W4214871907 @default.
- W4321093485 hasVolume "13" @default.
- W4321093485 isParatext "false" @default.
- W4321093485 isRetracted "false" @default.
- W4321093485 workType "article" @default.