Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321093574> ?p ?o ?g. }
- W4321093574 abstract "Introduction Functional brain networks (FBNs) estimated from functional magnetic resonance imaging (fMRI) data has become a potentially useful way for computer-aided diagnosis of neurological disorders, such as mild cognitive impairment (MCI), a prodromal stage of Alzheimer's Disease (AD). Currently, Pearson's correlation (PC) is the most widely-used method for constructing FBNs. Despite its popularity and simplicity, the conventional PC-based method usually results in dense networks where regions-of-interest (ROIs) are densely connected. This is not accordance with the biological prior that ROIs may be sparsely connected in the brain. To address this issue, previous studies proposed to employ a threshold or l_1-regularizer to construct sparse FBNs. However, these methods usually ignore rich topology structures, such as modularity that has been proven to be an important property for improving the information processing ability of the brain. Methods To this end, in this paper, we propose an accurate module induced PC (AM-PC) model to estimate FBNs with a clear modular structure, by including sparse and low-rank constraints on the Laplacian matrix of the network. Based on the property that zero eigenvalues of graph Laplacian matrix indicate the connected components, the proposed method can reduce the rank of the Laplacian matrix to a pre-defined number and obtain FBNs with an accurate number of modules. Results To validate the effectiveness of the proposed method, we use the estimated FBNs to classify subjects with MCI from healthy controls. Experimental results on 143 subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) with resting-state functional MRIs show that the proposed method achieves better classification performance than previous methods." @default.
- W4321093574 created "2023-02-17" @default.
- W4321093574 creator A5037944823 @default.
- W4321093574 creator A5040629535 @default.
- W4321093574 creator A5045392886 @default.
- W4321093574 creator A5050560717 @default.
- W4321093574 creator A5060413120 @default.
- W4321093574 creator A5076976404 @default.
- W4321093574 creator A5088423634 @default.
- W4321093574 date "2023-02-16" @default.
- W4321093574 modified "2023-10-14" @default.
- W4321093574 title "Accurate module induced brain network construction for mild cognitive impairment identification with functional MRI" @default.
- W4321093574 cites W1543502359 @default.
- W4321093574 cites W181767628 @default.
- W4321093574 cites W1968592137 @default.
- W4321093574 cites W1971600338 @default.
- W4321093574 cites W1975172027 @default.
- W4321093574 cites W1977317053 @default.
- W4321093574 cites W1996020380 @default.
- W4321093574 cites W1999653836 @default.
- W4321093574 cites W1999712226 @default.
- W4321093574 cites W2005821483 @default.
- W4321093574 cites W2007369824 @default.
- W4321093574 cites W2013391120 @default.
- W4321093574 cites W2021947606 @default.
- W4321093574 cites W2039069312 @default.
- W4321093574 cites W2039728861 @default.
- W4321093574 cites W2053081145 @default.
- W4321093574 cites W2058046532 @default.
- W4321093574 cites W2074870556 @default.
- W4321093574 cites W2081808793 @default.
- W4321093574 cites W2094426896 @default.
- W4321093574 cites W2106990053 @default.
- W4321093574 cites W2109434518 @default.
- W4321093574 cites W2110168541 @default.
- W4321093574 cites W2114051435 @default.
- W4321093574 cites W2115017507 @default.
- W4321093574 cites W2124698428 @default.
- W4321093574 cites W2134858198 @default.
- W4321093574 cites W2143502460 @default.
- W4321093574 cites W2153635508 @default.
- W4321093574 cites W2158063156 @default.
- W4321093574 cites W2165698076 @default.
- W4321093574 cites W2173905415 @default.
- W4321093574 cites W2286206973 @default.
- W4321093574 cites W2304527985 @default.
- W4321093574 cites W2502203196 @default.
- W4321093574 cites W2568463955 @default.
- W4321093574 cites W2582524520 @default.
- W4321093574 cites W2583114732 @default.
- W4321093574 cites W2725237741 @default.
- W4321093574 cites W2753113451 @default.
- W4321093574 cites W2765366332 @default.
- W4321093574 cites W2787999987 @default.
- W4321093574 cites W2791182716 @default.
- W4321093574 cites W2796201873 @default.
- W4321093574 cites W2807150694 @default.
- W4321093574 cites W2810500540 @default.
- W4321093574 cites W2886702050 @default.
- W4321093574 cites W2897691293 @default.
- W4321093574 cites W2903836283 @default.
- W4321093574 cites W2905545847 @default.
- W4321093574 cites W2963168174 @default.
- W4321093574 cites W2977419935 @default.
- W4321093574 cites W2984049139 @default.
- W4321093574 cites W2995978677 @default.
- W4321093574 cites W2998642388 @default.
- W4321093574 cites W3044674419 @default.
- W4321093574 cites W3098977856 @default.
- W4321093574 cites W3118451183 @default.
- W4321093574 cites W3126990165 @default.
- W4321093574 cites W3163842339 @default.
- W4321093574 cites W4293242549 @default.
- W4321093574 doi "https://doi.org/10.3389/fnagi.2023.1101879" @default.
- W4321093574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36875703" @default.
- W4321093574 hasPublicationYear "2023" @default.
- W4321093574 type Work @default.
- W4321093574 citedByCount "1" @default.
- W4321093574 crossrefType "journal-article" @default.
- W4321093574 hasAuthorship W4321093574A5037944823 @default.
- W4321093574 hasAuthorship W4321093574A5040629535 @default.
- W4321093574 hasAuthorship W4321093574A5045392886 @default.
- W4321093574 hasAuthorship W4321093574A5050560717 @default.
- W4321093574 hasAuthorship W4321093574A5060413120 @default.
- W4321093574 hasAuthorship W4321093574A5076976404 @default.
- W4321093574 hasAuthorship W4321093574A5088423634 @default.
- W4321093574 hasBestOaLocation W43210935741 @default.
- W4321093574 hasConcept C101468663 @default.
- W4321093574 hasConcept C111919701 @default.
- W4321093574 hasConcept C115178988 @default.
- W4321093574 hasConcept C119857082 @default.
- W4321093574 hasConcept C132525143 @default.
- W4321093574 hasConcept C153180895 @default.
- W4321093574 hasConcept C154945302 @default.
- W4321093574 hasConcept C15744967 @default.
- W4321093574 hasConcept C169760540 @default.
- W4321093574 hasConcept C169900460 @default.
- W4321093574 hasConcept C199360897 @default.
- W4321093574 hasConcept C199845137 @default.
- W4321093574 hasConcept C2779226451 @default.