Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321102643> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4321102643 abstract "In the FAME! project, we aim to develop an automatic speech recognition (ASR) system for Frisian-Dutch code-switching (CS) speech extracted from the archives of a local broadcaster with the ultimate goal of building a spoken document retrieval system. Unlike Dutch, Frisian is a low-resourced language with a very limited amount of manually annotated speech data. In this paper, we describe several automatic annotation approaches to enable using of a large amount of raw bilingual broadcast data for acoustic model training in a semi-supervised setting. Previously, it has been shown that the best-performing ASR system is obtained by two-stage multilingual deep neural network (DNN) training using 11 hours of manually annotated CS speech (reference) data together with speech data from other high-resourced languages. We compare the quality of transcriptions provided by this bilingual ASR system with several other approaches that use a language recognition system for assigning language labels to raw speech segments at the front-end and using monolingual ASR resources for transcription. We further investigate automatic annotation of the speakers appearing in the raw broadcast data by first labeling with (pseudo) speaker tags using a speaker diarization system and then linking to the known speakers appearing in the reference data using a speaker recognition system. These speaker labels are essential for speaker-adaptive training in the proposed setting. We train acoustic models using the manually and automatically annotated data and run recognition experiments on the development and test data of the FAME! speech corpus to quantify the quality of the automatic annotations. The ASR and CS detection results demonstrate the potential of using automatic language and speaker tagging in semi-supervised bilingual acoustic model training." @default.
- W4321102643 created "2023-02-17" @default.
- W4321102643 creator A5042937911 @default.
- W4321102643 creator A5055712584 @default.
- W4321102643 creator A5060382325 @default.
- W4321102643 creator A5073099512 @default.
- W4321102643 date "2018-10-23" @default.
- W4321102643 modified "2023-09-28" @default.
- W4321102643 title "Semi-supervised acoustic model training for speech with code-switching" @default.
- W4321102643 doi "https://doi.org/10.48550/arxiv.1810.09699" @default.
- W4321102643 hasPublicationYear "2018" @default.
- W4321102643 type Work @default.
- W4321102643 citedByCount "0" @default.
- W4321102643 crossrefType "posted-content" @default.
- W4321102643 hasAuthorship W4321102643A5042937911 @default.
- W4321102643 hasAuthorship W4321102643A5055712584 @default.
- W4321102643 hasAuthorship W4321102643A5060382325 @default.
- W4321102643 hasAuthorship W4321102643A5073099512 @default.
- W4321102643 hasBestOaLocation W43211026431 @default.
- W4321102643 hasConcept C132964779 @default.
- W4321102643 hasConcept C138885662 @default.
- W4321102643 hasConcept C14999030 @default.
- W4321102643 hasConcept C154945302 @default.
- W4321102643 hasConcept C155635449 @default.
- W4321102643 hasConcept C179926584 @default.
- W4321102643 hasConcept C199360897 @default.
- W4321102643 hasConcept C204321447 @default.
- W4321102643 hasConcept C2776230583 @default.
- W4321102643 hasConcept C2776321320 @default.
- W4321102643 hasConcept C28490314 @default.
- W4321102643 hasConcept C41008148 @default.
- W4321102643 hasConcept C41895202 @default.
- W4321102643 hasConcept C61328038 @default.
- W4321102643 hasConcept C91863865 @default.
- W4321102643 hasConceptScore W4321102643C132964779 @default.
- W4321102643 hasConceptScore W4321102643C138885662 @default.
- W4321102643 hasConceptScore W4321102643C14999030 @default.
- W4321102643 hasConceptScore W4321102643C154945302 @default.
- W4321102643 hasConceptScore W4321102643C155635449 @default.
- W4321102643 hasConceptScore W4321102643C179926584 @default.
- W4321102643 hasConceptScore W4321102643C199360897 @default.
- W4321102643 hasConceptScore W4321102643C204321447 @default.
- W4321102643 hasConceptScore W4321102643C2776230583 @default.
- W4321102643 hasConceptScore W4321102643C2776321320 @default.
- W4321102643 hasConceptScore W4321102643C28490314 @default.
- W4321102643 hasConceptScore W4321102643C41008148 @default.
- W4321102643 hasConceptScore W4321102643C41895202 @default.
- W4321102643 hasConceptScore W4321102643C61328038 @default.
- W4321102643 hasConceptScore W4321102643C91863865 @default.
- W4321102643 hasLocation W43211026431 @default.
- W4321102643 hasOpenAccess W4321102643 @default.
- W4321102643 hasPrimaryLocation W43211026431 @default.
- W4321102643 hasRelatedWork W129769200 @default.
- W4321102643 hasRelatedWork W1517984265 @default.
- W4321102643 hasRelatedWork W2073804160 @default.
- W4321102643 hasRelatedWork W2083088846 @default.
- W4321102643 hasRelatedWork W2276683421 @default.
- W4321102643 hasRelatedWork W2291624303 @default.
- W4321102643 hasRelatedWork W2888383292 @default.
- W4321102643 hasRelatedWork W2962045490 @default.
- W4321102643 hasRelatedWork W3049381209 @default.
- W4321102643 hasRelatedWork W2287300959 @default.
- W4321102643 isParatext "false" @default.
- W4321102643 isRetracted "false" @default.
- W4321102643 workType "article" @default.