Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321103699> ?p ?o ?g. }
- W4321103699 endingPage "2200" @default.
- W4321103699 startingPage "2200" @default.
- W4321103699 abstract "Deep learning models have been widely used in data-driven bridge structural damage diagnosis methods in recent years. However, these methods require training and test datasets to satisfy the same distribution, which is difficult to satisfy in practice. Domain adaptation transfer learning is an efficient method to solve this problem. Most of the current domain adaptation methods focus on close-set scenarios with the same classes in the source and target domains. However, in practical applications, new damage caused by long-term degradation often makes the target and source domains dissimilar in the class space. For such challenging open-set scenarios, existing domain adaptation methods will be powerless. To effectively solve the above problems, an adversarial auxiliary weighted subdomain adaptation algorithm is proposed for open-set scenarios. Adversarial learning is introduced to proposed an adversarial auxiliary weighting scheme to reflect the similarity of target samples with source classes. It effectively distinguishes unknown damage from known states. This paper further proposes a multi-channel multi-kernel weighted local maximum mean discrepancy metric (MCMK-WLMMD) to capture the fine-grained transferable information for conditional distribution alignment (sub-domain alignment). Extensive experiments on transfer tasks between three bridges verify the effectiveness of the algorithm in open-set scenarios." @default.
- W4321103699 created "2023-02-17" @default.
- W4321103699 creator A5006142448 @default.
- W4321103699 creator A5031625880 @default.
- W4321103699 creator A5050375579 @default.
- W4321103699 creator A5082792511 @default.
- W4321103699 date "2023-02-15" @default.
- W4321103699 modified "2023-10-14" @default.
- W4321103699 title "Adversarial Auxiliary Weighted Subdomain Adaptation for Open-Set Deep Transfer Bridge Damage Diagnosis" @default.
- W4321103699 cites W1032927584 @default.
- W4321103699 cites W2104094955 @default.
- W4321103699 cites W2165698076 @default.
- W4321103699 cites W2395579298 @default.
- W4321103699 cites W2552765257 @default.
- W4321103699 cites W2593768305 @default.
- W4321103699 cites W2598457882 @default.
- W4321103699 cites W2731372149 @default.
- W4321103699 cites W2757455114 @default.
- W4321103699 cites W2763583057 @default.
- W4321103699 cites W2767522444 @default.
- W4321103699 cites W2770456481 @default.
- W4321103699 cites W2782408838 @default.
- W4321103699 cites W2798149494 @default.
- W4321103699 cites W2801492038 @default.
- W4321103699 cites W2894787842 @default.
- W4321103699 cites W2898375427 @default.
- W4321103699 cites W2902164950 @default.
- W4321103699 cites W2904737228 @default.
- W4321103699 cites W2915423430 @default.
- W4321103699 cites W2942829333 @default.
- W4321103699 cites W2946048316 @default.
- W4321103699 cites W2948429981 @default.
- W4321103699 cites W2960842447 @default.
- W4321103699 cites W2965127303 @default.
- W4321103699 cites W2969736276 @default.
- W4321103699 cites W2991521245 @default.
- W4321103699 cites W3012040475 @default.
- W4321103699 cites W3015913963 @default.
- W4321103699 cites W3021632667 @default.
- W4321103699 cites W3024912007 @default.
- W4321103699 cites W3030997042 @default.
- W4321103699 cites W3031466690 @default.
- W4321103699 cites W3047675943 @default.
- W4321103699 cites W3083641663 @default.
- W4321103699 cites W3093984614 @default.
- W4321103699 cites W3124664719 @default.
- W4321103699 cites W2587911926 @default.
- W4321103699 doi "https://doi.org/10.3390/s23042200" @default.
- W4321103699 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36850797" @default.
- W4321103699 hasPublicationYear "2023" @default.
- W4321103699 type Work @default.
- W4321103699 citedByCount "0" @default.
- W4321103699 crossrefType "journal-article" @default.
- W4321103699 hasAuthorship W4321103699A5006142448 @default.
- W4321103699 hasAuthorship W4321103699A5031625880 @default.
- W4321103699 hasAuthorship W4321103699A5050375579 @default.
- W4321103699 hasAuthorship W4321103699A5082792511 @default.
- W4321103699 hasBestOaLocation W43211036991 @default.
- W4321103699 hasConcept C100776233 @default.
- W4321103699 hasConcept C103278499 @default.
- W4321103699 hasConcept C11413529 @default.
- W4321103699 hasConcept C115961682 @default.
- W4321103699 hasConcept C118615104 @default.
- W4321103699 hasConcept C119857082 @default.
- W4321103699 hasConcept C120665830 @default.
- W4321103699 hasConcept C121332964 @default.
- W4321103699 hasConcept C124101348 @default.
- W4321103699 hasConcept C126322002 @default.
- W4321103699 hasConcept C126838900 @default.
- W4321103699 hasConcept C127413603 @default.
- W4321103699 hasConcept C134306372 @default.
- W4321103699 hasConcept C139807058 @default.
- W4321103699 hasConcept C150899416 @default.
- W4321103699 hasConcept C154945302 @default.
- W4321103699 hasConcept C176217482 @default.
- W4321103699 hasConcept C177264268 @default.
- W4321103699 hasConcept C183115368 @default.
- W4321103699 hasConcept C199360897 @default.
- W4321103699 hasConcept C21547014 @default.
- W4321103699 hasConcept C33923547 @default.
- W4321103699 hasConcept C36503486 @default.
- W4321103699 hasConcept C37736160 @default.
- W4321103699 hasConcept C41008148 @default.
- W4321103699 hasConcept C42357961 @default.
- W4321103699 hasConcept C71924100 @default.
- W4321103699 hasConceptScore W4321103699C100776233 @default.
- W4321103699 hasConceptScore W4321103699C103278499 @default.
- W4321103699 hasConceptScore W4321103699C11413529 @default.
- W4321103699 hasConceptScore W4321103699C115961682 @default.
- W4321103699 hasConceptScore W4321103699C118615104 @default.
- W4321103699 hasConceptScore W4321103699C119857082 @default.
- W4321103699 hasConceptScore W4321103699C120665830 @default.
- W4321103699 hasConceptScore W4321103699C121332964 @default.
- W4321103699 hasConceptScore W4321103699C124101348 @default.
- W4321103699 hasConceptScore W4321103699C126322002 @default.
- W4321103699 hasConceptScore W4321103699C126838900 @default.
- W4321103699 hasConceptScore W4321103699C127413603 @default.
- W4321103699 hasConceptScore W4321103699C134306372 @default.