Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321105581> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4321105581 endingPage "2256" @default.
- W4321105581 startingPage "2232" @default.
- W4321105581 abstract "Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional, and machine learning models and our model demonstrates better performance across all datasets." @default.
- W4321105581 created "2023-02-17" @default.
- W4321105581 creator A5033097222 @default.
- W4321105581 creator A5076324764 @default.
- W4321105581 date "2023-02-15" @default.
- W4321105581 modified "2023-09-30" @default.
- W4321105581 title "Recurrent neural network for complex survival problems" @default.
- W4321105581 cites W1498436455 @default.
- W4321105581 cites W1902237438 @default.
- W4321105581 cites W2020628257 @default.
- W4321105581 cites W2038981426 @default.
- W4321105581 cites W2084139018 @default.
- W4321105581 cites W2358113125 @default.
- W4321105581 cites W2396881363 @default.
- W4321105581 cites W2507561135 @default.
- W4321105581 cites W2571620227 @default.
- W4321105581 cites W2604308885 @default.
- W4321105581 cites W2789172526 @default.
- W4321105581 cites W2794209590 @default.
- W4321105581 cites W2796130100 @default.
- W4321105581 cites W2928673187 @default.
- W4321105581 cites W2963232127 @default.
- W4321105581 cites W2982213159 @default.
- W4321105581 cites W2988226917 @default.
- W4321105581 cites W2999318011 @default.
- W4321105581 cites W3000499162 @default.
- W4321105581 cites W3017153481 @default.
- W4321105581 cites W3040821360 @default.
- W4321105581 cites W3119020862 @default.
- W4321105581 cites W3130213261 @default.
- W4321105581 cites W3210479995 @default.
- W4321105581 cites W4245958676 @default.
- W4321105581 cites W4285802353 @default.
- W4321105581 cites W4293241248 @default.
- W4321105581 doi "https://doi.org/10.1080/00949655.2023.2176504" @default.
- W4321105581 hasPublicationYear "2023" @default.
- W4321105581 type Work @default.
- W4321105581 citedByCount "0" @default.
- W4321105581 crossrefType "journal-article" @default.
- W4321105581 hasAuthorship W4321105581A5033097222 @default.
- W4321105581 hasAuthorship W4321105581A5076324764 @default.
- W4321105581 hasConcept C119043178 @default.
- W4321105581 hasConcept C119857082 @default.
- W4321105581 hasConcept C121332964 @default.
- W4321105581 hasConcept C124101348 @default.
- W4321105581 hasConcept C14036430 @default.
- W4321105581 hasConcept C154945302 @default.
- W4321105581 hasConcept C177264268 @default.
- W4321105581 hasConcept C199360897 @default.
- W4321105581 hasConcept C2776214188 @default.
- W4321105581 hasConcept C2779662365 @default.
- W4321105581 hasConcept C41008148 @default.
- W4321105581 hasConcept C50644808 @default.
- W4321105581 hasConcept C62520636 @default.
- W4321105581 hasConcept C78458016 @default.
- W4321105581 hasConcept C86803240 @default.
- W4321105581 hasConceptScore W4321105581C119043178 @default.
- W4321105581 hasConceptScore W4321105581C119857082 @default.
- W4321105581 hasConceptScore W4321105581C121332964 @default.
- W4321105581 hasConceptScore W4321105581C124101348 @default.
- W4321105581 hasConceptScore W4321105581C14036430 @default.
- W4321105581 hasConceptScore W4321105581C154945302 @default.
- W4321105581 hasConceptScore W4321105581C177264268 @default.
- W4321105581 hasConceptScore W4321105581C199360897 @default.
- W4321105581 hasConceptScore W4321105581C2776214188 @default.
- W4321105581 hasConceptScore W4321105581C2779662365 @default.
- W4321105581 hasConceptScore W4321105581C41008148 @default.
- W4321105581 hasConceptScore W4321105581C50644808 @default.
- W4321105581 hasConceptScore W4321105581C62520636 @default.
- W4321105581 hasConceptScore W4321105581C78458016 @default.
- W4321105581 hasConceptScore W4321105581C86803240 @default.
- W4321105581 hasFunder F4320332175 @default.
- W4321105581 hasIssue "13" @default.
- W4321105581 hasLocation W43211055811 @default.
- W4321105581 hasOpenAccess W4321105581 @default.
- W4321105581 hasPrimaryLocation W43211055811 @default.
- W4321105581 hasRelatedWork W2361276656 @default.
- W4321105581 hasRelatedWork W2961085424 @default.
- W4321105581 hasRelatedWork W2963058055 @default.
- W4321105581 hasRelatedWork W4285260836 @default.
- W4321105581 hasRelatedWork W4286629047 @default.
- W4321105581 hasRelatedWork W4306321456 @default.
- W4321105581 hasRelatedWork W4306674287 @default.
- W4321105581 hasRelatedWork W1629725936 @default.
- W4321105581 hasRelatedWork W2183287460 @default.
- W4321105581 hasRelatedWork W4224009465 @default.
- W4321105581 hasVolume "93" @default.
- W4321105581 isParatext "false" @default.
- W4321105581 isRetracted "false" @default.
- W4321105581 workType "article" @default.