Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321106518> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4321106518 abstract "We study this subject by first proving that the p-primary subgroup of the classical Selmer group for an elliptic curve with good, ordinary reduction at a prime p has a very simple and elegant description which involves just the Galois module of p-power torsion points. We then prove theorems of Mazur, Schneider, and Perrin-Riou on the basis of this description. The final section, which is half of this long paper, contains a number of results and examples including a thorough study of the mu-invariant." @default.
- W4321106518 created "2023-02-17" @default.
- W4321106518 creator A5010781786 @default.
- W4321106518 date "1998-09-17" @default.
- W4321106518 modified "2023-09-29" @default.
- W4321106518 title "Iwasawa theory for elliptic curves" @default.
- W4321106518 doi "https://doi.org/10.48550/arxiv.math/9809206" @default.
- W4321106518 hasPublicationYear "1998" @default.
- W4321106518 type Work @default.
- W4321106518 citedByCount "0" @default.
- W4321106518 crossrefType "posted-content" @default.
- W4321106518 hasAuthorship W4321106518A5010781786 @default.
- W4321106518 hasBestOaLocation W43211065181 @default.
- W4321106518 hasConcept C136119220 @default.
- W4321106518 hasConcept C136170076 @default.
- W4321106518 hasConcept C141071460 @default.
- W4321106518 hasConcept C145899342 @default.
- W4321106518 hasConcept C157567686 @default.
- W4321106518 hasConcept C179603306 @default.
- W4321106518 hasConcept C190470478 @default.
- W4321106518 hasConcept C194909684 @default.
- W4321106518 hasConcept C197875053 @default.
- W4321106518 hasConcept C202444582 @default.
- W4321106518 hasConcept C33923547 @default.
- W4321106518 hasConcept C37914503 @default.
- W4321106518 hasConcept C71924100 @default.
- W4321106518 hasConcept C73683783 @default.
- W4321106518 hasConcept C77461463 @default.
- W4321106518 hasConcept C94375191 @default.
- W4321106518 hasConceptScore W4321106518C136119220 @default.
- W4321106518 hasConceptScore W4321106518C136170076 @default.
- W4321106518 hasConceptScore W4321106518C141071460 @default.
- W4321106518 hasConceptScore W4321106518C145899342 @default.
- W4321106518 hasConceptScore W4321106518C157567686 @default.
- W4321106518 hasConceptScore W4321106518C179603306 @default.
- W4321106518 hasConceptScore W4321106518C190470478 @default.
- W4321106518 hasConceptScore W4321106518C194909684 @default.
- W4321106518 hasConceptScore W4321106518C197875053 @default.
- W4321106518 hasConceptScore W4321106518C202444582 @default.
- W4321106518 hasConceptScore W4321106518C33923547 @default.
- W4321106518 hasConceptScore W4321106518C37914503 @default.
- W4321106518 hasConceptScore W4321106518C71924100 @default.
- W4321106518 hasConceptScore W4321106518C73683783 @default.
- W4321106518 hasConceptScore W4321106518C77461463 @default.
- W4321106518 hasConceptScore W4321106518C94375191 @default.
- W4321106518 hasLocation W43211065181 @default.
- W4321106518 hasOpenAccess W4321106518 @default.
- W4321106518 hasPrimaryLocation W43211065181 @default.
- W4321106518 hasRelatedWork W1495025586 @default.
- W4321106518 hasRelatedWork W1592236911 @default.
- W4321106518 hasRelatedWork W2064857481 @default.
- W4321106518 hasRelatedWork W2547008385 @default.
- W4321106518 hasRelatedWork W2742877535 @default.
- W4321106518 hasRelatedWork W2951792312 @default.
- W4321106518 hasRelatedWork W3102162803 @default.
- W4321106518 hasRelatedWork W3215387210 @default.
- W4321106518 hasRelatedWork W4245658598 @default.
- W4321106518 hasRelatedWork W577418756 @default.
- W4321106518 isParatext "false" @default.
- W4321106518 isRetracted "false" @default.
- W4321106518 workType "article" @default.