Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321110098> ?p ?o ?g. }
- W4321110098 endingPage "24" @default.
- W4321110098 startingPage "3" @default.
- W4321110098 abstract "This study used stick model augmentation on single-camera motion video to create a markerless motion classification model of manual operations. All videos were augmented with a stick model composed of keypoints and lines by using the programming model, which later incorporated the COCO dataset, OpenCV and OpenPose modules to estimate the coordinates and body joints. The stick model data included the initial velocity, cumulative velocity, and acceleration for each body joint. The extracted motion vector data were normalized using three different techniques, and the resulting datasets were subjected to eight classifiers. The experiment involved four distinct motion sequences performed by eight participants. The random forest classifier performed the best in terms of accuracy in recorded data classification in its min-max normalized dataset. This classifier also obtained a score of 81.80% for the dataset before random subsampling and a score of 92.37% for the resampled dataset. Meanwhile, the random subsampling method dramatically improved classification accuracy by removing noise data and replacing them with replicated instances to balance the class. This research advances methodological and applied knowledge on the capture and classification of human motion using a single camera view." @default.
- W4321110098 created "2023-02-17" @default.
- W4321110098 creator A5043573851 @default.
- W4321110098 creator A5059059115 @default.
- W4321110098 date "2023-02-16" @default.
- W4321110098 modified "2023-09-26" @default.
- W4321110098 title "Vision-based biomechanical markerless motion classification" @default.
- W4321110098 cites W102163386 @default.
- W4321110098 cites W107879894 @default.
- W4321110098 cites W1861492603 @default.
- W4321110098 cites W1964042685 @default.
- W4321110098 cites W1967320926 @default.
- W4321110098 cites W1991723827 @default.
- W4321110098 cites W1999126347 @default.
- W4321110098 cites W2013996424 @default.
- W4321110098 cites W2040889326 @default.
- W4321110098 cites W2041650849 @default.
- W4321110098 cites W2043135246 @default.
- W4321110098 cites W2053180904 @default.
- W4321110098 cites W2080937712 @default.
- W4321110098 cites W2087071574 @default.
- W4321110098 cites W2098216885 @default.
- W4321110098 cites W2099502046 @default.
- W4321110098 cites W2100410769 @default.
- W4321110098 cites W2123972799 @default.
- W4321110098 cites W2155047372 @default.
- W4321110098 cites W2155351433 @default.
- W4321110098 cites W2161969291 @default.
- W4321110098 cites W2187639235 @default.
- W4321110098 cites W2292467824 @default.
- W4321110098 cites W2299643923 @default.
- W4321110098 cites W2476097875 @default.
- W4321110098 cites W2548601959 @default.
- W4321110098 cites W2559085405 @default.
- W4321110098 cites W2743372195 @default.
- W4321110098 cites W2762595912 @default.
- W4321110098 cites W2847860439 @default.
- W4321110098 cites W2884079030 @default.
- W4321110098 cites W2886283524 @default.
- W4321110098 cites W2889731794 @default.
- W4321110098 cites W2916798096 @default.
- W4321110098 cites W2948527806 @default.
- W4321110098 cites W2962730651 @default.
- W4321110098 cites W2963474899 @default.
- W4321110098 cites W2973127894 @default.
- W4321110098 cites W2981397768 @default.
- W4321110098 cites W2992448234 @default.
- W4321110098 cites W2997297078 @default.
- W4321110098 cites W3000303838 @default.
- W4321110098 cites W3003325119 @default.
- W4321110098 cites W3031044065 @default.
- W4321110098 cites W3034889886 @default.
- W4321110098 cites W3048626398 @default.
- W4321110098 cites W3141038539 @default.
- W4321110098 cites W3156454664 @default.
- W4321110098 cites W3171970570 @default.
- W4321110098 doi "https://doi.org/10.22630/mgv.2023.32.1.1" @default.
- W4321110098 hasPublicationYear "2023" @default.
- W4321110098 type Work @default.
- W4321110098 citedByCount "0" @default.
- W4321110098 crossrefType "journal-article" @default.
- W4321110098 hasAuthorship W4321110098A5043573851 @default.
- W4321110098 hasAuthorship W4321110098A5059059115 @default.
- W4321110098 hasBestOaLocation W43211100981 @default.
- W4321110098 hasConcept C104114177 @default.
- W4321110098 hasConcept C12267149 @default.
- W4321110098 hasConcept C153180895 @default.
- W4321110098 hasConcept C154945302 @default.
- W4321110098 hasConcept C169258074 @default.
- W4321110098 hasConcept C31972630 @default.
- W4321110098 hasConcept C41008148 @default.
- W4321110098 hasConcept C48007421 @default.
- W4321110098 hasConcept C95623464 @default.
- W4321110098 hasConceptScore W4321110098C104114177 @default.
- W4321110098 hasConceptScore W4321110098C12267149 @default.
- W4321110098 hasConceptScore W4321110098C153180895 @default.
- W4321110098 hasConceptScore W4321110098C154945302 @default.
- W4321110098 hasConceptScore W4321110098C169258074 @default.
- W4321110098 hasConceptScore W4321110098C31972630 @default.
- W4321110098 hasConceptScore W4321110098C41008148 @default.
- W4321110098 hasConceptScore W4321110098C48007421 @default.
- W4321110098 hasConceptScore W4321110098C95623464 @default.
- W4321110098 hasIssue "1" @default.
- W4321110098 hasLocation W43211100981 @default.
- W4321110098 hasOpenAccess W4321110098 @default.
- W4321110098 hasPrimaryLocation W43211100981 @default.
- W4321110098 hasRelatedWork W2041636156 @default.
- W4321110098 hasRelatedWork W2120008580 @default.
- W4321110098 hasRelatedWork W2160451891 @default.
- W4321110098 hasRelatedWork W2275058042 @default.
- W4321110098 hasRelatedWork W2508925980 @default.
- W4321110098 hasRelatedWork W2997958394 @default.
- W4321110098 hasRelatedWork W3004377704 @default.
- W4321110098 hasRelatedWork W3200612453 @default.
- W4321110098 hasRelatedWork W3217110323 @default.
- W4321110098 hasRelatedWork W4283661982 @default.
- W4321110098 hasVolume "32" @default.
- W4321110098 isParatext "false" @default.