Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321117039> ?p ?o ?g. }
- W4321117039 endingPage "116783" @default.
- W4321117039 startingPage "116783" @default.
- W4321117039 abstract "Interpenetrating phase composites (IPCs) are advanced multi-phase composites where each phase forms an entirely interconnected network leading to enhanced performance. This paper introduces a novel inverse design approach, wherein mathematically-known triply periodic minimal surfaces (TPMS) representations are combined with a deep neural network-based approach for generating IPCs with specified properties. The proposed approach utilizes a weighted combination of Schwartz P, Diamond D, and Schoen’s F-RD TPMS architectures to generate novel IPCs. Additionally, we outline a novel deep learning-based computational approach that predicts combinatorial TPMS-based IPCs for targeted effective elastic properties. Specifically, a five-layer deep neural network (DNN) that enables inverse mapping between five different material properties and six geometrical parameters defining the TPMS-based IPCs is outlined. It is also empirically shown that DNN accurately predicts combinatorial TPMS-based IPCs at a fraction of the computational cost and hence, can play a vital role in multiscale design problems and find extensive usage in IPCs design problems. The effective elastic properties (Young’s modulus, Poisson’s ratio, bulk modulus, and shear modulus) of proposed generative TPMS-based IPCs are evaluated using the finite element method and are compared against a single phase TPMS-based IPCs, analytical models, and elastic bounds. Numerical results demonstrate that IPCs generated by the proposed method shows superior mechanical behavior." @default.
- W4321117039 created "2023-02-18" @default.
- W4321117039 creator A5021575840 @default.
- W4321117039 creator A5029287878 @default.
- W4321117039 creator A5053703388 @default.
- W4321117039 creator A5057265513 @default.
- W4321117039 creator A5090155483 @default.
- W4321117039 date "2023-05-01" @default.
- W4321117039 modified "2023-09-29" @default.
- W4321117039 title "Deep learning-based inverse design framework for property targeted novel architectured interpenetrating phase composites" @default.
- W4321117039 cites W1003043691 @default.
- W4321117039 cites W1252382540 @default.
- W4321117039 cites W1978153137 @default.
- W4321117039 cites W1982079914 @default.
- W4321117039 cites W1983740939 @default.
- W4321117039 cites W1985139543 @default.
- W4321117039 cites W1988176343 @default.
- W4321117039 cites W1989993440 @default.
- W4321117039 cites W1992868432 @default.
- W4321117039 cites W1995038246 @default.
- W4321117039 cites W1995978509 @default.
- W4321117039 cites W2001549471 @default.
- W4321117039 cites W2005688218 @default.
- W4321117039 cites W2041539495 @default.
- W4321117039 cites W2046299427 @default.
- W4321117039 cites W2051246575 @default.
- W4321117039 cites W2056088995 @default.
- W4321117039 cites W2067472596 @default.
- W4321117039 cites W2072098216 @default.
- W4321117039 cites W2074176021 @default.
- W4321117039 cites W2078218677 @default.
- W4321117039 cites W2081558883 @default.
- W4321117039 cites W2084330772 @default.
- W4321117039 cites W2085288345 @default.
- W4321117039 cites W2112624456 @default.
- W4321117039 cites W2121078288 @default.
- W4321117039 cites W2161941276 @default.
- W4321117039 cites W2232179027 @default.
- W4321117039 cites W2251397827 @default.
- W4321117039 cites W2261352718 @default.
- W4321117039 cites W2318848228 @default.
- W4321117039 cites W2428138686 @default.
- W4321117039 cites W2585576641 @default.
- W4321117039 cites W2605843673 @default.
- W4321117039 cites W2800003798 @default.
- W4321117039 cites W2811388867 @default.
- W4321117039 cites W293727017 @default.
- W4321117039 cites W2942240074 @default.
- W4321117039 cites W2963556194 @default.
- W4321117039 cites W2964763564 @default.
- W4321117039 cites W2971768012 @default.
- W4321117039 cites W2980113469 @default.
- W4321117039 cites W2995528637 @default.
- W4321117039 cites W3000404031 @default.
- W4321117039 cites W3001396333 @default.
- W4321117039 cites W3038387142 @default.
- W4321117039 cites W3084646506 @default.
- W4321117039 cites W3109494347 @default.
- W4321117039 cites W3159276480 @default.
- W4321117039 cites W3187819109 @default.
- W4321117039 cites W3204948303 @default.
- W4321117039 cites W4220935459 @default.
- W4321117039 cites W4303453688 @default.
- W4321117039 cites W761513044 @default.
- W4321117039 cites W2094233573 @default.
- W4321117039 doi "https://doi.org/10.1016/j.compstruct.2023.116783" @default.
- W4321117039 hasPublicationYear "2023" @default.
- W4321117039 type Work @default.
- W4321117039 citedByCount "2" @default.
- W4321117039 countsByYear W43211170392023 @default.
- W4321117039 crossrefType "journal-article" @default.
- W4321117039 hasAuthorship W4321117039A5021575840 @default.
- W4321117039 hasAuthorship W4321117039A5029287878 @default.
- W4321117039 hasAuthorship W4321117039A5053703388 @default.
- W4321117039 hasAuthorship W4321117039A5057265513 @default.
- W4321117039 hasAuthorship W4321117039A5090155483 @default.
- W4321117039 hasConcept C111472728 @default.
- W4321117039 hasConcept C11413529 @default.
- W4321117039 hasConcept C121332964 @default.
- W4321117039 hasConcept C127413603 @default.
- W4321117039 hasConcept C135628077 @default.
- W4321117039 hasConcept C138885662 @default.
- W4321117039 hasConcept C154945302 @default.
- W4321117039 hasConcept C159985019 @default.
- W4321117039 hasConcept C189950617 @default.
- W4321117039 hasConcept C192562407 @default.
- W4321117039 hasConcept C207467116 @default.
- W4321117039 hasConcept C2524010 @default.
- W4321117039 hasConcept C33923547 @default.
- W4321117039 hasConcept C41008148 @default.
- W4321117039 hasConcept C44280652 @default.
- W4321117039 hasConcept C50644808 @default.
- W4321117039 hasConcept C62520636 @default.
- W4321117039 hasConcept C66938386 @default.
- W4321117039 hasConceptScore W4321117039C111472728 @default.
- W4321117039 hasConceptScore W4321117039C11413529 @default.
- W4321117039 hasConceptScore W4321117039C121332964 @default.
- W4321117039 hasConceptScore W4321117039C127413603 @default.