Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321153098> ?p ?o ?g. }
- W4321153098 endingPage "257" @default.
- W4321153098 startingPage "249" @default.
- W4321153098 abstract "Abstract Objective Indeterminate thyroid nodules (ITN) are common and often lead to (sometimes unnecessary) diagnostic surgery. We aimed to evaluate the performance of two machine learning methods (ML), based on routinely available features to predict the risk of malignancy (RM) of ITN. Design Multi-centric diagnostic retrospective cohort study conducted between 2010 and 2020. Methods Adult patients who underwent surgery for at least one Bethesda III-V thyroid nodule (TN) with fully available medical records were included. Of the 7917 records reviewed, eligibility criteria were met in 1288 patients with 1335 TN. Patients were divided into training (940 TN) and validation cohort (395 TN). The diagnostic performance of a multivariate logistic regression model (LR) and its nomogram, and a random forest model (RF) in predicting the nature and RM of a TN were evaluated. All available clinical, biological, ultrasound, and cytological data of the patients were collected and used to construct the two algorithms. Results There were 253 (19%), 693 (52%), and 389 (29%) TN classified as Bethesda III, IV, and V, respectively, with an overall RM of 35%. Both cohorts were well-balanced for baseline characteristics. Both models were validated on the validation cohort, with performances in terms of specificity, sensitivity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve of 90%, 57.3%, 73.4%, 81.4%, 84% (CI95%: 78.5%-89.5%) for the LR model, and 87.6%, 54.7%, 68.1%, 80%, 82.6% (CI95%: 77.4%-87.9%) for the RF model, respectively. Conclusions Our ML models performed well in predicting the nature of Bethesda III-V TN. In addition, our freely available online nomogram helped to refine the RM, identifying low-risk TN that may benefit from surveillance in up to a third of ITN, and thus may reduce the number of unnecessary surgeries." @default.
- W4321153098 created "2023-02-18" @default.
- W4321153098 creator A5009058474 @default.
- W4321153098 creator A5012274489 @default.
- W4321153098 creator A5012363639 @default.
- W4321153098 creator A5016569671 @default.
- W4321153098 creator A5023675047 @default.
- W4321153098 creator A5031127459 @default.
- W4321153098 creator A5038872330 @default.
- W4321153098 creator A5039309595 @default.
- W4321153098 creator A5046276892 @default.
- W4321153098 creator A5046713684 @default.
- W4321153098 creator A5048335393 @default.
- W4321153098 creator A5066227680 @default.
- W4321153098 creator A5067511700 @default.
- W4321153098 creator A5076880351 @default.
- W4321153098 creator A5081159772 @default.
- W4321153098 creator A5082215736 @default.
- W4321153098 creator A5082818584 @default.
- W4321153098 creator A5084003772 @default.
- W4321153098 date "2023-02-17" @default.
- W4321153098 modified "2023-10-18" @default.
- W4321153098 title "Application of machine learning methods to guide patient management by predicting the risk of malignancy of Bethesda III-V thyroid nodules" @default.
- W4321153098 cites W1851977184 @default.
- W4321153098 cites W1983713521 @default.
- W4321153098 cites W2036602023 @default.
- W4321153098 cites W2073793440 @default.
- W4321153098 cites W2101429599 @default.
- W4321153098 cites W2140185571 @default.
- W4321153098 cites W2145150141 @default.
- W4321153098 cites W2345856725 @default.
- W4321153098 cites W2603577764 @default.
- W4321153098 cites W2616510090 @default.
- W4321153098 cites W2739342915 @default.
- W4321153098 cites W2742257046 @default.
- W4321153098 cites W2766712571 @default.
- W4321153098 cites W2770528180 @default.
- W4321153098 cites W2772146928 @default.
- W4321153098 cites W2900078105 @default.
- W4321153098 cites W2902060043 @default.
- W4321153098 cites W2907067813 @default.
- W4321153098 cites W2943491685 @default.
- W4321153098 cites W2963053373 @default.
- W4321153098 cites W2967407171 @default.
- W4321153098 cites W2973991514 @default.
- W4321153098 cites W2985548453 @default.
- W4321153098 cites W3023817512 @default.
- W4321153098 cites W3026900255 @default.
- W4321153098 cites W3045617238 @default.
- W4321153098 cites W3110871622 @default.
- W4321153098 cites W3112591598 @default.
- W4321153098 cites W3131996314 @default.
- W4321153098 cites W3138271869 @default.
- W4321153098 cites W3155097974 @default.
- W4321153098 cites W3164042496 @default.
- W4321153098 cites W3170719356 @default.
- W4321153098 cites W3172005333 @default.
- W4321153098 cites W4229056286 @default.
- W4321153098 doi "https://doi.org/10.1093/ejendo/lvad017" @default.
- W4321153098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36799885" @default.
- W4321153098 hasPublicationYear "2023" @default.
- W4321153098 type Work @default.
- W4321153098 citedByCount "1" @default.
- W4321153098 countsByYear W43211530982023 @default.
- W4321153098 crossrefType "journal-article" @default.
- W4321153098 hasAuthorship W4321153098A5009058474 @default.
- W4321153098 hasAuthorship W4321153098A5012274489 @default.
- W4321153098 hasAuthorship W4321153098A5012363639 @default.
- W4321153098 hasAuthorship W4321153098A5016569671 @default.
- W4321153098 hasAuthorship W4321153098A5023675047 @default.
- W4321153098 hasAuthorship W4321153098A5031127459 @default.
- W4321153098 hasAuthorship W4321153098A5038872330 @default.
- W4321153098 hasAuthorship W4321153098A5039309595 @default.
- W4321153098 hasAuthorship W4321153098A5046276892 @default.
- W4321153098 hasAuthorship W4321153098A5046713684 @default.
- W4321153098 hasAuthorship W4321153098A5048335393 @default.
- W4321153098 hasAuthorship W4321153098A5066227680 @default.
- W4321153098 hasAuthorship W4321153098A5067511700 @default.
- W4321153098 hasAuthorship W4321153098A5076880351 @default.
- W4321153098 hasAuthorship W4321153098A5081159772 @default.
- W4321153098 hasAuthorship W4321153098A5082215736 @default.
- W4321153098 hasAuthorship W4321153098A5082818584 @default.
- W4321153098 hasAuthorship W4321153098A5084003772 @default.
- W4321153098 hasBestOaLocation W43211530981 @default.
- W4321153098 hasConcept C126322002 @default.
- W4321153098 hasConcept C151730666 @default.
- W4321153098 hasConcept C151956035 @default.
- W4321153098 hasConcept C167135981 @default.
- W4321153098 hasConcept C195910791 @default.
- W4321153098 hasConcept C2776731575 @default.
- W4321153098 hasConcept C2779022025 @default.
- W4321153098 hasConcept C2779399171 @default.
- W4321153098 hasConcept C3019719930 @default.
- W4321153098 hasConcept C34626388 @default.
- W4321153098 hasConcept C58471807 @default.
- W4321153098 hasConcept C71924100 @default.
- W4321153098 hasConcept C72563966 @default.
- W4321153098 hasConcept C86803240 @default.