Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321170030> ?p ?o ?g. }
- W4321170030 endingPage "810" @default.
- W4321170030 startingPage "795" @default.
- W4321170030 abstract "Abstract In the machine learning subfield of natural language processing, a topic model is a type of unsupervised method that is used to uncover abstract topics within a corpus of text. Dynamic topic modelling (DTM) is used for capturing change in these topics over time. The study deploys DTM on corpus of electronic health record psychotherapy notes. This retrospective study examines whether DTM helps distinguish closely matched patients that did and did not die by suicide. Cohort consists of United States Department of Veterans Affairs (VA) patients diagnosed with Posttraumatic Stress Disorder (PTSD) between 2004 and 2013. Each case (those who died by suicide during the year following diagnosis) was matched with five controls (those who remained alive) that shared psychotherapists and had similar suicide risk based on VA's suicide prediction algorithm. Cohort was restricted to patients who received psychotherapy for 9+ months after initial PTSD diagnoses (cases = 77; controls = 362). For cases, psychotherapy notes from diagnosis until death were examined. For controls, psychotherapy notes from diagnosis until matched case's death date were examined. A Python‐based DTM algorithm was utilized. Derived topics identified population‐specific themes, including PTSD, psychotherapy, medication, communication and relationships. Control topics changed significantly more over time than case topics. Topic differences highlighted engagement, expressivity and therapeutic alliance. This study strengthens groundwork for deriving population‐specific, psychosocial and time‐sensitive suicide risk variables." @default.
- W4321170030 created "2023-02-18" @default.
- W4321170030 creator A5019884233 @default.
- W4321170030 creator A5053202754 @default.
- W4321170030 creator A5070476741 @default.
- W4321170030 creator A5085945280 @default.
- W4321170030 creator A5088999573 @default.
- W4321170030 date "2023-02-26" @default.
- W4321170030 modified "2023-10-17" @default.
- W4321170030 title "Dynamic suicide topic modelling: Deriving population‐specific, psychosocial and time‐sensitive suicide risk variables from Electronic Health Record psychotherapy notes" @default.
- W4321170030 cites W1497754834 @default.
- W4321170030 cites W1545404249 @default.
- W4321170030 cites W1727999343 @default.
- W4321170030 cites W1763471514 @default.
- W4321170030 cites W1831355885 @default.
- W4321170030 cites W2031597326 @default.
- W4321170030 cites W2033582154 @default.
- W4321170030 cites W2061585911 @default.
- W4321170030 cites W2062048979 @default.
- W4321170030 cites W2067529879 @default.
- W4321170030 cites W2072644219 @default.
- W4321170030 cites W2084761515 @default.
- W4321170030 cites W2100412643 @default.
- W4321170030 cites W2111635289 @default.
- W4321170030 cites W2130967235 @default.
- W4321170030 cites W2134514597 @default.
- W4321170030 cites W2136561006 @default.
- W4321170030 cites W2153923143 @default.
- W4321170030 cites W2221016424 @default.
- W4321170030 cites W2299052454 @default.
- W4321170030 cites W2406501289 @default.
- W4321170030 cites W2515424873 @default.
- W4321170030 cites W2525381941 @default.
- W4321170030 cites W2537052583 @default.
- W4321170030 cites W2554087526 @default.
- W4321170030 cites W2582664174 @default.
- W4321170030 cites W2593565302 @default.
- W4321170030 cites W2598895258 @default.
- W4321170030 cites W2605512411 @default.
- W4321170030 cites W2613960323 @default.
- W4321170030 cites W2725461439 @default.
- W4321170030 cites W2739279969 @default.
- W4321170030 cites W2784756072 @default.
- W4321170030 cites W2799568506 @default.
- W4321170030 cites W2810500942 @default.
- W4321170030 cites W2901059675 @default.
- W4321170030 cites W2903108180 @default.
- W4321170030 cites W2912751061 @default.
- W4321170030 cites W2917157846 @default.
- W4321170030 cites W2921234531 @default.
- W4321170030 cites W2921616123 @default.
- W4321170030 cites W2951805042 @default.
- W4321170030 cites W2955640230 @default.
- W4321170030 cites W2955707745 @default.
- W4321170030 cites W2955880496 @default.
- W4321170030 cites W2969522674 @default.
- W4321170030 cites W2971565213 @default.
- W4321170030 cites W2981984641 @default.
- W4321170030 cites W2982713160 @default.
- W4321170030 cites W2983493784 @default.
- W4321170030 cites W2991046162 @default.
- W4321170030 cites W2997591727 @default.
- W4321170030 cites W3008864515 @default.
- W4321170030 cites W3027889410 @default.
- W4321170030 cites W3040473692 @default.
- W4321170030 cites W3087180323 @default.
- W4321170030 cites W3089264828 @default.
- W4321170030 cites W3097481617 @default.
- W4321170030 cites W3101015870 @default.
- W4321170030 cites W3112631310 @default.
- W4321170030 cites W3114584136 @default.
- W4321170030 cites W3126209868 @default.
- W4321170030 cites W3127924821 @default.
- W4321170030 cites W3136738164 @default.
- W4321170030 cites W3136865286 @default.
- W4321170030 cites W3138845560 @default.
- W4321170030 cites W3163507806 @default.
- W4321170030 cites W3165797065 @default.
- W4321170030 cites W3166674690 @default.
- W4321170030 cites W3177105417 @default.
- W4321170030 cites W3194785977 @default.
- W4321170030 cites W3196107225 @default.
- W4321170030 cites W3207057434 @default.
- W4321170030 cites W3208438798 @default.
- W4321170030 cites W4206020641 @default.
- W4321170030 cites W4210255831 @default.
- W4321170030 cites W4212837558 @default.
- W4321170030 cites W4224251615 @default.
- W4321170030 cites W4237791300 @default.
- W4321170030 cites W4245427992 @default.
- W4321170030 cites W4283753009 @default.
- W4321170030 cites W4287958718 @default.
- W4321170030 cites W4288077072 @default.
- W4321170030 cites W4376096898 @default.
- W4321170030 cites W2105578949 @default.
- W4321170030 doi "https://doi.org/10.1002/cpp.2842" @default.
- W4321170030 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36797651" @default.
- W4321170030 hasPublicationYear "2023" @default.