Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321196612> ?p ?o ?g. }
- W4321196612 endingPage "120841" @default.
- W4321196612 startingPage "120841" @default.
- W4321196612 abstract "Lithium-ion batteries may exhibit an abnormal degradation due to causes such as lithium plating, characterized by a rapid capacity drop after a period of normal capacity degradation, posing a major threat to the system reliability and safety. To ensure continuously safe use of the system, this paper proposes a dynamic early recognition framework to distinguish the abnormal batteries from normally degrading batteries before their capacity drops. An unsupervised machine learning method called quantum clustering is introduced to identify normal and abnormal batteries, and it is further improved by using a form of Weibull wave function, which is more sensitive to the abnormal battery features. To eliminate the subjective effects on clustering performance, a self-adaptive parameter estimation method for the quantum clustering is also developed. Through applying to two types of lithium-ion batteries, the proposed dynamic early recognition framework is proven to be highly effective, where all abnormal batteries are recognized before capacity drops, and quantitatively, the average recognition points are 45.78% and 34.75% earlier than the average of knee-points where capacity begins to drop, showing great advantages compared with existing methods." @default.
- W4321196612 created "2023-02-18" @default.
- W4321196612 creator A5022574250 @default.
- W4321196612 creator A5046078938 @default.
- W4321196612 creator A5069456938 @default.
- W4321196612 creator A5080503157 @default.
- W4321196612 date "2023-04-01" @default.
- W4321196612 modified "2023-10-17" @default.
- W4321196612 title "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering" @default.
- W4321196612 cites W1628954589 @default.
- W4321196612 cites W2032424488 @default.
- W4321196612 cites W2049067339 @default.
- W4321196612 cites W2081234174 @default.
- W4321196612 cites W2115989962 @default.
- W4321196612 cites W2165413597 @default.
- W4321196612 cites W2284542842 @default.
- W4321196612 cites W2342265232 @default.
- W4321196612 cites W2508674981 @default.
- W4321196612 cites W2523204293 @default.
- W4321196612 cites W2567937288 @default.
- W4321196612 cites W2568828645 @default.
- W4321196612 cites W2624543473 @default.
- W4321196612 cites W2767663538 @default.
- W4321196612 cites W2790709282 @default.
- W4321196612 cites W2794886854 @default.
- W4321196612 cites W2796568833 @default.
- W4321196612 cites W2799353157 @default.
- W4321196612 cites W2921358399 @default.
- W4321196612 cites W2948578443 @default.
- W4321196612 cites W2957056027 @default.
- W4321196612 cites W2978202285 @default.
- W4321196612 cites W3000488426 @default.
- W4321196612 cites W3003257958 @default.
- W4321196612 cites W3017990358 @default.
- W4321196612 cites W3025731229 @default.
- W4321196612 cites W3049495830 @default.
- W4321196612 cites W3080093041 @default.
- W4321196612 cites W3089294463 @default.
- W4321196612 cites W3114628019 @default.
- W4321196612 cites W3122086316 @default.
- W4321196612 cites W3170237381 @default.
- W4321196612 cites W3179571438 @default.
- W4321196612 cites W3194214662 @default.
- W4321196612 cites W3194315921 @default.
- W4321196612 cites W3213181601 @default.
- W4321196612 cites W3216182831 @default.
- W4321196612 cites W4210800695 @default.
- W4321196612 cites W4221108419 @default.
- W4321196612 cites W4223983006 @default.
- W4321196612 cites W4224263701 @default.
- W4321196612 cites W4282963785 @default.
- W4321196612 cites W4288926429 @default.
- W4321196612 cites W4295957082 @default.
- W4321196612 cites W4296875160 @default.
- W4321196612 cites W4307057868 @default.
- W4321196612 cites W4307386963 @default.
- W4321196612 doi "https://doi.org/10.1016/j.apenergy.2023.120841" @default.
- W4321196612 hasPublicationYear "2023" @default.
- W4321196612 type Work @default.
- W4321196612 citedByCount "2" @default.
- W4321196612 countsByYear W43211966122023 @default.
- W4321196612 crossrefType "journal-article" @default.
- W4321196612 hasAuthorship W4321196612A5022574250 @default.
- W4321196612 hasAuthorship W4321196612A5046078938 @default.
- W4321196612 hasAuthorship W4321196612A5069456938 @default.
- W4321196612 hasAuthorship W4321196612A5080503157 @default.
- W4321196612 hasConcept C105795698 @default.
- W4321196612 hasConcept C121332964 @default.
- W4321196612 hasConcept C127413603 @default.
- W4321196612 hasConcept C134018914 @default.
- W4321196612 hasConcept C153180895 @default.
- W4321196612 hasConcept C154945302 @default.
- W4321196612 hasConcept C163258240 @default.
- W4321196612 hasConcept C173291955 @default.
- W4321196612 hasConcept C200601418 @default.
- W4321196612 hasConcept C2778541603 @default.
- W4321196612 hasConcept C2781345722 @default.
- W4321196612 hasConcept C2989104859 @default.
- W4321196612 hasConcept C33923547 @default.
- W4321196612 hasConcept C41008148 @default.
- W4321196612 hasConcept C43214815 @default.
- W4321196612 hasConcept C555008776 @default.
- W4321196612 hasConcept C62520636 @default.
- W4321196612 hasConcept C71924100 @default.
- W4321196612 hasConcept C73555534 @default.
- W4321196612 hasConcept C76155785 @default.
- W4321196612 hasConcept C84114770 @default.
- W4321196612 hasConceptScore W4321196612C105795698 @default.
- W4321196612 hasConceptScore W4321196612C121332964 @default.
- W4321196612 hasConceptScore W4321196612C127413603 @default.
- W4321196612 hasConceptScore W4321196612C134018914 @default.
- W4321196612 hasConceptScore W4321196612C153180895 @default.
- W4321196612 hasConceptScore W4321196612C154945302 @default.
- W4321196612 hasConceptScore W4321196612C163258240 @default.
- W4321196612 hasConceptScore W4321196612C173291955 @default.
- W4321196612 hasConceptScore W4321196612C200601418 @default.
- W4321196612 hasConceptScore W4321196612C2778541603 @default.
- W4321196612 hasConceptScore W4321196612C2781345722 @default.