Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321242371> ?p ?o ?g. }
- W4321242371 endingPage "770" @default.
- W4321242371 startingPage "751" @default.
- W4321242371 abstract "Extensive research has confirmed the successful prediction of rock mass quality in tunnel boring machine (TBM) construction using machine learning methods based on big data collected during the boring process. However, the developed model cannot be applied to a new project owing to the different mechanical and environmental features involved in different projects. This study tries to combine the datasets of three TBM projects whose cutterhead diameters are 5.2, 7.9 and 9.8 m, respectively. In this study, machine learning focused on predictions of a binary rock mass quality system was implemented using this unified dataset by adding the diameter and disc cutter number as new attributes into the input. The process consists of: (1) individual learning for the three respective datasets, (2) shuffled learning for the unified dataset containing randomly distributed information from the three projects, and (3) crossed learning aimed at validating that the algorithm developed on the unified dataset can produce predictions with equally acceptable accuracies as those obtained in the individual learning. It is anticipated that with more datasets joining this cross-project learning, we will be able to develop a machine learning algorithm that is suitable for new projects with a wide range of cutterhead diameters and disc cutter numbers at the beginning of the tunnel excavation." @default.
- W4321242371 created "2023-02-18" @default.
- W4321242371 creator A5005587552 @default.
- W4321242371 creator A5043000714 @default.
- W4321242371 creator A5044226628 @default.
- W4321242371 creator A5054568770 @default.
- W4321242371 creator A5057689679 @default.
- W4321242371 creator A5086933072 @default.
- W4321242371 date "2023-02-09" @default.
- W4321242371 modified "2023-09-26" @default.
- W4321242371 title "Cross-project prediction for rock mass using shuffled TBM big dataset and knowledge-based machine learning methods" @default.
- W4321242371 cites W1509786997 @default.
- W4321242371 cites W1552623717 @default.
- W4321242371 cites W1968969471 @default.
- W4321242371 cites W1977168082 @default.
- W4321242371 cites W1980805050 @default.
- W4321242371 cites W1982633996 @default.
- W4321242371 cites W1986614398 @default.
- W4321242371 cites W1992064529 @default.
- W4321242371 cites W2001423489 @default.
- W4321242371 cites W2006952036 @default.
- W4321242371 cites W2011439940 @default.
- W4321242371 cites W2015441607 @default.
- W4321242371 cites W2091734163 @default.
- W4321242371 cites W2150734023 @default.
- W4321242371 cites W2158143121 @default.
- W4321242371 cites W2158698691 @default.
- W4321242371 cites W2163592787 @default.
- W4321242371 cites W2595474610 @default.
- W4321242371 cites W2686770366 @default.
- W4321242371 cites W2898551427 @default.
- W4321242371 cites W2899325490 @default.
- W4321242371 cites W2909455890 @default.
- W4321242371 cites W2911964244 @default.
- W4321242371 cites W2912902753 @default.
- W4321242371 cites W2946742630 @default.
- W4321242371 cites W2964050650 @default.
- W4321242371 cites W2979567825 @default.
- W4321242371 cites W3009921884 @default.
- W4321242371 cites W3010738077 @default.
- W4321242371 cites W3087763244 @default.
- W4321242371 cites W3103907715 @default.
- W4321242371 cites W3107891919 @default.
- W4321242371 cites W3118708621 @default.
- W4321242371 cites W3119554784 @default.
- W4321242371 cites W3134148588 @default.
- W4321242371 cites W31594615 @default.
- W4321242371 cites W3176970773 @default.
- W4321242371 cites W3180432165 @default.
- W4321242371 cites W3194009703 @default.
- W4321242371 cites W3203504246 @default.
- W4321242371 cites W4206309202 @default.
- W4321242371 cites W4206939781 @default.
- W4321242371 cites W4210870838 @default.
- W4321242371 cites W4239510810 @default.
- W4321242371 cites W42435736 @default.
- W4321242371 cites W4285679287 @default.
- W4321242371 doi "https://doi.org/10.1007/s11431-022-2290-7" @default.
- W4321242371 hasPublicationYear "2023" @default.
- W4321242371 type Work @default.
- W4321242371 citedByCount "1" @default.
- W4321242371 countsByYear W43212423712023 @default.
- W4321242371 crossrefType "journal-article" @default.
- W4321242371 hasAuthorship W4321242371A5005587552 @default.
- W4321242371 hasAuthorship W4321242371A5043000714 @default.
- W4321242371 hasAuthorship W4321242371A5044226628 @default.
- W4321242371 hasAuthorship W4321242371A5054568770 @default.
- W4321242371 hasAuthorship W4321242371A5057689679 @default.
- W4321242371 hasAuthorship W4321242371A5086933072 @default.
- W4321242371 hasBestOaLocation W43212423711 @default.
- W4321242371 hasConcept C111472728 @default.
- W4321242371 hasConcept C111919701 @default.
- W4321242371 hasConcept C119857082 @default.
- W4321242371 hasConcept C124101348 @default.
- W4321242371 hasConcept C127413603 @default.
- W4321242371 hasConcept C138885662 @default.
- W4321242371 hasConcept C146978453 @default.
- W4321242371 hasConcept C154945302 @default.
- W4321242371 hasConcept C187320778 @default.
- W4321242371 hasConcept C204323151 @default.
- W4321242371 hasConcept C2779530757 @default.
- W4321242371 hasConcept C31858485 @default.
- W4321242371 hasConcept C41008148 @default.
- W4321242371 hasConcept C41242791 @default.
- W4321242371 hasConcept C75684735 @default.
- W4321242371 hasConcept C98045186 @default.
- W4321242371 hasConceptScore W4321242371C111472728 @default.
- W4321242371 hasConceptScore W4321242371C111919701 @default.
- W4321242371 hasConceptScore W4321242371C119857082 @default.
- W4321242371 hasConceptScore W4321242371C124101348 @default.
- W4321242371 hasConceptScore W4321242371C127413603 @default.
- W4321242371 hasConceptScore W4321242371C138885662 @default.
- W4321242371 hasConceptScore W4321242371C146978453 @default.
- W4321242371 hasConceptScore W4321242371C154945302 @default.
- W4321242371 hasConceptScore W4321242371C187320778 @default.
- W4321242371 hasConceptScore W4321242371C204323151 @default.
- W4321242371 hasConceptScore W4321242371C2779530757 @default.
- W4321242371 hasConceptScore W4321242371C31858485 @default.