Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321253257> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4321253257 endingPage "757" @default.
- W4321253257 startingPage "757" @default.
- W4321253257 abstract "Among the many different types of cancer, bone cancer is the most lethal and least prevalent. More cases are reported each year. Early diagnosis of bone cancer is crucial since it helps limit the spread of malignant cells and reduce mortality. The manual method of detection of bone cancer is cumbersome and requires specialized knowledge. A deep transfer-based bone cancer diagnosis (DTBV) system using VGG16 feature extraction is proposed to address these issues. The proposed DTBV system uses a transfer learning (TL) approach in which a pre-trained convolutional neural network (CNN) model is used to extract features from the pre-processed input image and a support vector machine (SVM) model is used to train using these features to distinguish between cancerous and healthy bone. The CNN is applied to the image datasets as it provides better image recognition with high accuracy when the layers in neural network feature extraction increase. In the proposed DTBV system, the VGG16 model extracts the features from the input X-ray image. A mutual information statistic that measures the dependency between the different features is then used to select the best features. This is the first time this method has been used for detecting bone cancer. Once selected features are selected, they are fed into the SVM classifier. The SVM model classifies the given testing dataset into malignant and benign categories. A comprehensive performance evaluation has demonstrated that the proposed DTBV system is highly efficient in detecting bone cancer, with an accuracy of 93.9%, which is more accurate than other existing systems." @default.
- W4321253257 created "2023-02-18" @default.
- W4321253257 creator A5010314794 @default.
- W4321253257 creator A5039829316 @default.
- W4321253257 creator A5042406519 @default.
- W4321253257 creator A5045937177 @default.
- W4321253257 creator A5074303884 @default.
- W4321253257 creator A5090908380 @default.
- W4321253257 date "2023-02-16" @default.
- W4321253257 modified "2023-09-27" @default.
- W4321253257 title "DTBV: A Deep Transfer-Based Bone Cancer Diagnosis System Using VGG16 Feature Extraction" @default.
- W4321253257 cites W2913492735 @default.
- W4321253257 cites W2955414824 @default.
- W4321253257 cites W2997428102 @default.
- W4321253257 cites W3008812129 @default.
- W4321253257 cites W3011992163 @default.
- W4321253257 cites W3023173618 @default.
- W4321253257 cites W3039276560 @default.
- W4321253257 cites W3040617750 @default.
- W4321253257 cites W3046103539 @default.
- W4321253257 cites W3060703154 @default.
- W4321253257 cites W3082110198 @default.
- W4321253257 cites W3114603152 @default.
- W4321253257 cites W3120795911 @default.
- W4321253257 cites W3128511643 @default.
- W4321253257 cites W3134503721 @default.
- W4321253257 cites W3153699014 @default.
- W4321253257 cites W3167250384 @default.
- W4321253257 cites W3169117630 @default.
- W4321253257 cites W3207386825 @default.
- W4321253257 cites W4200230371 @default.
- W4321253257 cites W4205556479 @default.
- W4321253257 cites W4210721581 @default.
- W4321253257 cites W4213413818 @default.
- W4321253257 cites W4214901809 @default.
- W4321253257 cites W4224053252 @default.
- W4321253257 cites W4226144451 @default.
- W4321253257 cites W4226424600 @default.
- W4321253257 doi "https://doi.org/10.3390/diagnostics13040757" @default.
- W4321253257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36832245" @default.
- W4321253257 hasPublicationYear "2023" @default.
- W4321253257 type Work @default.
- W4321253257 citedByCount "0" @default.
- W4321253257 crossrefType "journal-article" @default.
- W4321253257 hasAuthorship W4321253257A5010314794 @default.
- W4321253257 hasAuthorship W4321253257A5039829316 @default.
- W4321253257 hasAuthorship W4321253257A5042406519 @default.
- W4321253257 hasAuthorship W4321253257A5045937177 @default.
- W4321253257 hasAuthorship W4321253257A5074303884 @default.
- W4321253257 hasAuthorship W4321253257A5090908380 @default.
- W4321253257 hasBestOaLocation W43212532571 @default.
- W4321253257 hasConcept C108583219 @default.
- W4321253257 hasConcept C121608353 @default.
- W4321253257 hasConcept C12267149 @default.
- W4321253257 hasConcept C126322002 @default.
- W4321253257 hasConcept C150899416 @default.
- W4321253257 hasConcept C153180895 @default.
- W4321253257 hasConcept C154945302 @default.
- W4321253257 hasConcept C41008148 @default.
- W4321253257 hasConcept C50644808 @default.
- W4321253257 hasConcept C52622490 @default.
- W4321253257 hasConcept C71924100 @default.
- W4321253257 hasConcept C81363708 @default.
- W4321253257 hasConcept C95623464 @default.
- W4321253257 hasConceptScore W4321253257C108583219 @default.
- W4321253257 hasConceptScore W4321253257C121608353 @default.
- W4321253257 hasConceptScore W4321253257C12267149 @default.
- W4321253257 hasConceptScore W4321253257C126322002 @default.
- W4321253257 hasConceptScore W4321253257C150899416 @default.
- W4321253257 hasConceptScore W4321253257C153180895 @default.
- W4321253257 hasConceptScore W4321253257C154945302 @default.
- W4321253257 hasConceptScore W4321253257C41008148 @default.
- W4321253257 hasConceptScore W4321253257C50644808 @default.
- W4321253257 hasConceptScore W4321253257C52622490 @default.
- W4321253257 hasConceptScore W4321253257C71924100 @default.
- W4321253257 hasConceptScore W4321253257C81363708 @default.
- W4321253257 hasConceptScore W4321253257C95623464 @default.
- W4321253257 hasIssue "4" @default.
- W4321253257 hasLocation W43212532571 @default.
- W4321253257 hasLocation W43212532572 @default.
- W4321253257 hasLocation W43212532573 @default.
- W4321253257 hasLocation W43212532574 @default.
- W4321253257 hasOpenAccess W4321253257 @default.
- W4321253257 hasPrimaryLocation W43212532571 @default.
- W4321253257 hasRelatedWork W2279398222 @default.
- W4321253257 hasRelatedWork W2336974148 @default.
- W4321253257 hasRelatedWork W2996856019 @default.
- W4321253257 hasRelatedWork W3018421652 @default.
- W4321253257 hasRelatedWork W3091976719 @default.
- W4321253257 hasRelatedWork W3192840557 @default.
- W4321253257 hasRelatedWork W4220996320 @default.
- W4321253257 hasRelatedWork W4285149559 @default.
- W4321253257 hasRelatedWork W4299822940 @default.
- W4321253257 hasRelatedWork W2345184372 @default.
- W4321253257 hasVolume "13" @default.
- W4321253257 isParatext "false" @default.
- W4321253257 isRetracted "false" @default.
- W4321253257 workType "article" @default.