Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321277006> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4321277006 abstract "Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of classification tasks. In this work, we consider extending classical SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) are presented. Here, the pixels are mapped to the Hilbert space using a family of parameterized quantum feature maps (related to quantum kernels). The parameters are optimized to maximize the kernel target alignment. The quantum kernels have been selected such that they enabled analysis of numerous relevant properties while being able to simulate them with classical computers on a real-life large-scale dataset. Specifically, we approach the problem of cloud detection in the multispectral satellite imagery, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy comparable to the classical SVM with the RBF kernel for large datasets. Interestingly, for large datasets, the high accuracy was also observed for the simple quantum kernels, lacking quantum entanglement." @default.
- W4321277006 created "2023-02-18" @default.
- W4321277006 creator A5021399270 @default.
- W4321277006 creator A5037991388 @default.
- W4321277006 creator A5041796575 @default.
- W4321277006 creator A5067965505 @default.
- W4321277006 creator A5073001649 @default.
- W4321277006 creator A5074772452 @default.
- W4321277006 creator A5075529194 @default.
- W4321277006 date "2023-02-16" @default.
- W4321277006 modified "2023-10-14" @default.
- W4321277006 title "Detecting Clouds in Multispectral Satellite Images Using Quantum-Kernel Support Vector Machines" @default.
- W4321277006 doi "https://doi.org/10.48550/arxiv.2302.08270" @default.
- W4321277006 hasPublicationYear "2023" @default.
- W4321277006 type Work @default.
- W4321277006 citedByCount "0" @default.
- W4321277006 crossrefType "posted-content" @default.
- W4321277006 hasAuthorship W4321277006A5021399270 @default.
- W4321277006 hasAuthorship W4321277006A5037991388 @default.
- W4321277006 hasAuthorship W4321277006A5041796575 @default.
- W4321277006 hasAuthorship W4321277006A5067965505 @default.
- W4321277006 hasAuthorship W4321277006A5073001649 @default.
- W4321277006 hasAuthorship W4321277006A5074772452 @default.
- W4321277006 hasAuthorship W4321277006A5075529194 @default.
- W4321277006 hasBestOaLocation W43212770061 @default.
- W4321277006 hasConcept C11413529 @default.
- W4321277006 hasConcept C114614502 @default.
- W4321277006 hasConcept C121332964 @default.
- W4321277006 hasConcept C12267149 @default.
- W4321277006 hasConcept C1276947 @default.
- W4321277006 hasConcept C153180895 @default.
- W4321277006 hasConcept C154945302 @default.
- W4321277006 hasConcept C160633673 @default.
- W4321277006 hasConcept C173163844 @default.
- W4321277006 hasConcept C19269812 @default.
- W4321277006 hasConcept C205649164 @default.
- W4321277006 hasConcept C33923547 @default.
- W4321277006 hasConcept C41008148 @default.
- W4321277006 hasConcept C62649853 @default.
- W4321277006 hasConcept C74193536 @default.
- W4321277006 hasConcept C83665646 @default.
- W4321277006 hasConceptScore W4321277006C11413529 @default.
- W4321277006 hasConceptScore W4321277006C114614502 @default.
- W4321277006 hasConceptScore W4321277006C121332964 @default.
- W4321277006 hasConceptScore W4321277006C12267149 @default.
- W4321277006 hasConceptScore W4321277006C1276947 @default.
- W4321277006 hasConceptScore W4321277006C153180895 @default.
- W4321277006 hasConceptScore W4321277006C154945302 @default.
- W4321277006 hasConceptScore W4321277006C160633673 @default.
- W4321277006 hasConceptScore W4321277006C173163844 @default.
- W4321277006 hasConceptScore W4321277006C19269812 @default.
- W4321277006 hasConceptScore W4321277006C205649164 @default.
- W4321277006 hasConceptScore W4321277006C33923547 @default.
- W4321277006 hasConceptScore W4321277006C41008148 @default.
- W4321277006 hasConceptScore W4321277006C62649853 @default.
- W4321277006 hasConceptScore W4321277006C74193536 @default.
- W4321277006 hasConceptScore W4321277006C83665646 @default.
- W4321277006 hasLocation W43212770061 @default.
- W4321277006 hasOpenAccess W4321277006 @default.
- W4321277006 hasPrimaryLocation W43212770061 @default.
- W4321277006 hasRelatedWork W2055221611 @default.
- W4321277006 hasRelatedWork W2115998131 @default.
- W4321277006 hasRelatedWork W2141705618 @default.
- W4321277006 hasRelatedWork W2149249189 @default.
- W4321277006 hasRelatedWork W2153189372 @default.
- W4321277006 hasRelatedWork W2160451891 @default.
- W4321277006 hasRelatedWork W2348964713 @default.
- W4321277006 hasRelatedWork W2734744645 @default.
- W4321277006 hasRelatedWork W4285281467 @default.
- W4321277006 hasRelatedWork W2187500075 @default.
- W4321277006 isParatext "false" @default.
- W4321277006 isRetracted "false" @default.
- W4321277006 workType "article" @default.