Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321350881> ?p ?o ?g. }
- W4321350881 endingPage "106690" @default.
- W4321350881 startingPage "106690" @default.
- W4321350881 abstract "A clinically compatible computerized segmentation model is presented here that aspires to supply clinical gland informative details by seizing every small and intricate variation in medical images, integrate second opinions, and reduce human errors.It comprises of enhanced learning capability that extracts denser multi-scale gland-specific features, recover semantic gap during concatenation, and effectively handle resolution-degradation and vanishing gradient problems. It is having three proposed modules namely Atrous Convolved Residual Learning Module in the encoder as well as decoder, Residual Attention Module in the skip connection paths, and Atrous Convolved Transitional Module as the transitional and output layer. Also, pre-processing techniques like patch-sampling, stain-normalization, augmentation, etc. are employed to develop its generalization capability. To verify its robustness and invigorate network invariance against digital variability, extensive experiments are carried out employing three different public datasets i.e., GlaS (Gland Segmentation Challenge), CRAG (Colorectal Adenocarcinoma Gland) and LC-25000 (Lung Colon-25000) dataset and a private HosC (Hospital Colon) dataset.The presented model accomplished combative gland detection outcomes having F1-score (GlaS(Test A(0.957), Test B(0.926)), CRAG(0.935), LC 25000(0.922), HosC(0.963)); and gland segmentation results having Object-Dice Index (GlaS(Test A(0.961), Test B(0.933)), CRAG(0.961), LC-25000(0.940), HosC(0.929)), and Object-Hausdorff Distance (GlaS(Test A(21.77) and Test B(69.74)), CRAG(87.63), LC-25000(95.85), HosC(83.29)). In addition, validation score (GlaS (Test A(0.945), Test B(0.937)), CRAG(0.934), LC-25000(0.911), HosC(0.928)) supplied by the proficient pathologists is integrated for the end segmentation results to corroborate the applicability and appropriateness for assistance at the clinical level applications.The proposed system will assist pathologists in devising precise diagnoses by offering a referential perspective during morphology assessment of colon histopathology images." @default.
- W4321350881 created "2023-02-20" @default.
- W4321350881 creator A5020156649 @default.
- W4321350881 creator A5066696090 @default.
- W4321350881 date "2023-03-01" @default.
- W4321350881 modified "2023-10-03" @default.
- W4321350881 title "An Atrous Convolved Hybrid Seg-Net Model with residual and attention mechanism for gland detection and segmentation in histopathological images" @default.
- W4321350881 cites W1901129140 @default.
- W4321350881 cites W2288892845 @default.
- W4321350881 cites W2395611524 @default.
- W4321350881 cites W2412782625 @default.
- W4321350881 cites W2632315370 @default.
- W4321350881 cites W2753886374 @default.
- W4321350881 cites W2769999077 @default.
- W4321350881 cites W2805735218 @default.
- W4321350881 cites W2810555899 @default.
- W4321350881 cites W2901840819 @default.
- W4321350881 cites W2946027615 @default.
- W4321350881 cites W2955553907 @default.
- W4321350881 cites W2963420686 @default.
- W4321350881 cites W2963881378 @default.
- W4321350881 cites W2983868555 @default.
- W4321350881 cites W2999044405 @default.
- W4321350881 cites W3005621234 @default.
- W4321350881 cites W3016293126 @default.
- W4321350881 cites W3021364136 @default.
- W4321350881 cites W3028954669 @default.
- W4321350881 cites W3040396712 @default.
- W4321350881 cites W3046020750 @default.
- W4321350881 cites W3046446892 @default.
- W4321350881 cites W3049194333 @default.
- W4321350881 cites W3084093797 @default.
- W4321350881 cites W3087075955 @default.
- W4321350881 cites W3088047400 @default.
- W4321350881 cites W3109000640 @default.
- W4321350881 cites W3118493528 @default.
- W4321350881 cites W3128646645 @default.
- W4321350881 cites W3178723556 @default.
- W4321350881 cites W3211084592 @default.
- W4321350881 cites W3212678216 @default.
- W4321350881 cites W4224279125 @default.
- W4321350881 cites W4225389560 @default.
- W4321350881 cites W4280637152 @default.
- W4321350881 cites W4319987526 @default.
- W4321350881 doi "https://doi.org/10.1016/j.compbiomed.2023.106690" @default.
- W4321350881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36827788" @default.
- W4321350881 hasPublicationYear "2023" @default.
- W4321350881 type Work @default.
- W4321350881 citedByCount "3" @default.
- W4321350881 countsByYear W43213508812023 @default.
- W4321350881 crossrefType "journal-article" @default.
- W4321350881 hasAuthorship W4321350881A5020156649 @default.
- W4321350881 hasAuthorship W4321350881A5066696090 @default.
- W4321350881 hasConcept C11413529 @default.
- W4321350881 hasConcept C136886441 @default.
- W4321350881 hasConcept C142724271 @default.
- W4321350881 hasConcept C144024400 @default.
- W4321350881 hasConcept C153180895 @default.
- W4321350881 hasConcept C154945302 @default.
- W4321350881 hasConcept C155512373 @default.
- W4321350881 hasConcept C160633673 @default.
- W4321350881 hasConcept C19165224 @default.
- W4321350881 hasConcept C2781294515 @default.
- W4321350881 hasConcept C31972630 @default.
- W4321350881 hasConcept C41008148 @default.
- W4321350881 hasConcept C71924100 @default.
- W4321350881 hasConcept C74864618 @default.
- W4321350881 hasConcept C78201319 @default.
- W4321350881 hasConcept C89600930 @default.
- W4321350881 hasConceptScore W4321350881C11413529 @default.
- W4321350881 hasConceptScore W4321350881C136886441 @default.
- W4321350881 hasConceptScore W4321350881C142724271 @default.
- W4321350881 hasConceptScore W4321350881C144024400 @default.
- W4321350881 hasConceptScore W4321350881C153180895 @default.
- W4321350881 hasConceptScore W4321350881C154945302 @default.
- W4321350881 hasConceptScore W4321350881C155512373 @default.
- W4321350881 hasConceptScore W4321350881C160633673 @default.
- W4321350881 hasConceptScore W4321350881C19165224 @default.
- W4321350881 hasConceptScore W4321350881C2781294515 @default.
- W4321350881 hasConceptScore W4321350881C31972630 @default.
- W4321350881 hasConceptScore W4321350881C41008148 @default.
- W4321350881 hasConceptScore W4321350881C71924100 @default.
- W4321350881 hasConceptScore W4321350881C74864618 @default.
- W4321350881 hasConceptScore W4321350881C78201319 @default.
- W4321350881 hasConceptScore W4321350881C89600930 @default.
- W4321350881 hasLocation W43213508811 @default.
- W4321350881 hasLocation W43213508812 @default.
- W4321350881 hasOpenAccess W4321350881 @default.
- W4321350881 hasPrimaryLocation W43213508811 @default.
- W4321350881 hasRelatedWork W1669643531 @default.
- W4321350881 hasRelatedWork W2005437358 @default.
- W4321350881 hasRelatedWork W2060518359 @default.
- W4321350881 hasRelatedWork W2147943677 @default.
- W4321350881 hasRelatedWork W2157071234 @default.
- W4321350881 hasRelatedWork W2266657717 @default.
- W4321350881 hasRelatedWork W2371329095 @default.
- W4321350881 hasRelatedWork W2433461236 @default.
- W4321350881 hasRelatedWork W2517104666 @default.