Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321369724> ?p ?o ?g. }
- W4321369724 endingPage "136532" @default.
- W4321369724 startingPage "136532" @default.
- W4321369724 abstract "Sedimentation directly affects the thermal performance and efficiency of thermal systems such as boilers, heat exchangers, and solar collectors. This work investigates the effect of nanoparticles deposition inside a tube with possible application in parabolic solar collectors. This study combines the lattice Boltzmann (LBM) and the control finite volume (CFV) methods for a realistic simulation of nanoparticles deposition for the first time. While the bulk flow is solved using the CFV method, the flow behavior in the deposition layer is evaluated using the LBM model. Nanoparticle movements are also captured using dynamic mesh refinement in CFV in order to accurately predict their behavior. The numerical results are then used for training a deep feed-forward neural network with appropriate boundary conditions (DFNN-BC) to visualize and predict the transient sedimentation behavior. The prediction includes (i) representation of nanoparticles in the LB domain while it is trained during the particle movement in the FV domain and (ii) extension of the computational domain in space, which is three times bigger than the training domain. DFNN-BC is used to study the heat transfer and fluid flow characteristics for Reynolds numbers ranging from 12 to 50 where the working fluid is a nanofluid. The results indicated that using DFNN-BC can reduce the calculation time by 80% compared to the case where the entire domain is solved numerically. The results show that deposition has a maximum effect of 0.32% on the average velocity ratio (AVR) at Re = 12. This variation is related to the viscosity and shear stress of the fluid. With an increment in Reynolds number, the AVR decreases to 0.12%. This is because of the decrement in the number of sedimented nanoparticles. In addition, increasing the velocity significantly affects the rate of sedimentation and volume fraction ratio. It is also seen that the fluid's velocity and density increase by 8.69% and 6.53%, respectively, whereas the viscosity decreases by 7.74%. The findings of this study provide a better understanding of the details of the sedimentation process, such as particle behavior and variation in parameters near the surface, like concentration, thermal conductivity, and viscosity of the sedimentation and the formation of a deposition layer in fluid–particle multiphase flows. This, in turn, is expected to lead to cost savings in maintenance through more precise predictions of service periods for heat transfer equipment." @default.
- W4321369724 created "2023-02-21" @default.
- W4321369724 creator A5018158774 @default.
- W4321369724 creator A5027526503 @default.
- W4321369724 creator A5031241305 @default.
- W4321369724 creator A5033993155 @default.
- W4321369724 creator A5041152805 @default.
- W4321369724 creator A5055151897 @default.
- W4321369724 creator A5058357528 @default.
- W4321369724 creator A5075499540 @default.
- W4321369724 creator A5087096547 @default.
- W4321369724 date "2023-05-01" @default.
- W4321369724 modified "2023-10-06" @default.
- W4321369724 title "A hybrid deep learning - CFD approach for modeling nanoparticles’ sedimentation processes for possible application in clean energy systems" @default.
- W4321369724 cites W1974005183 @default.
- W4321369724 cites W1978990551 @default.
- W4321369724 cites W1987451168 @default.
- W4321369724 cites W2021294547 @default.
- W4321369724 cites W2028907900 @default.
- W4321369724 cites W2051504418 @default.
- W4321369724 cites W2115512876 @default.
- W4321369724 cites W2121788117 @default.
- W4321369724 cites W2135243916 @default.
- W4321369724 cites W2153754711 @default.
- W4321369724 cites W2167736493 @default.
- W4321369724 cites W2526662471 @default.
- W4321369724 cites W2969504523 @default.
- W4321369724 cites W2972664362 @default.
- W4321369724 cites W2995589936 @default.
- W4321369724 cites W2999603501 @default.
- W4321369724 cites W3002829518 @default.
- W4321369724 cites W3011072461 @default.
- W4321369724 cites W3023939027 @default.
- W4321369724 cites W3031625819 @default.
- W4321369724 cites W3038001075 @default.
- W4321369724 cites W3043727976 @default.
- W4321369724 cites W3094338990 @default.
- W4321369724 cites W3125959803 @default.
- W4321369724 cites W3178290420 @default.
- W4321369724 cites W3204778125 @default.
- W4321369724 cites W4303646514 @default.
- W4321369724 cites W4320178434 @default.
- W4321369724 doi "https://doi.org/10.1016/j.jclepro.2023.136532" @default.
- W4321369724 hasPublicationYear "2023" @default.
- W4321369724 type Work @default.
- W4321369724 citedByCount "1" @default.
- W4321369724 countsByYear W43213697242023 @default.
- W4321369724 crossrefType "journal-article" @default.
- W4321369724 hasAuthorship W4321369724A5018158774 @default.
- W4321369724 hasAuthorship W4321369724A5027526503 @default.
- W4321369724 hasAuthorship W4321369724A5031241305 @default.
- W4321369724 hasAuthorship W4321369724A5033993155 @default.
- W4321369724 hasAuthorship W4321369724A5041152805 @default.
- W4321369724 hasAuthorship W4321369724A5055151897 @default.
- W4321369724 hasAuthorship W4321369724A5058357528 @default.
- W4321369724 hasAuthorship W4321369724A5075499540 @default.
- W4321369724 hasAuthorship W4321369724A5087096547 @default.
- W4321369724 hasConcept C121332964 @default.
- W4321369724 hasConcept C127313418 @default.
- W4321369724 hasConcept C127413603 @default.
- W4321369724 hasConcept C151730666 @default.
- W4321369724 hasConcept C1633027 @default.
- W4321369724 hasConcept C182748727 @default.
- W4321369724 hasConcept C192562407 @default.
- W4321369724 hasConcept C196558001 @default.
- W4321369724 hasConcept C21821499 @default.
- W4321369724 hasConcept C21946209 @default.
- W4321369724 hasConcept C2816523 @default.
- W4321369724 hasConcept C41008148 @default.
- W4321369724 hasConcept C44154836 @default.
- W4321369724 hasConcept C50517652 @default.
- W4321369724 hasConcept C57879066 @default.
- W4321369724 hasConcept C64297162 @default.
- W4321369724 hasConcept C78519656 @default.
- W4321369724 hasConceptScore W4321369724C121332964 @default.
- W4321369724 hasConceptScore W4321369724C127313418 @default.
- W4321369724 hasConceptScore W4321369724C127413603 @default.
- W4321369724 hasConceptScore W4321369724C151730666 @default.
- W4321369724 hasConceptScore W4321369724C1633027 @default.
- W4321369724 hasConceptScore W4321369724C182748727 @default.
- W4321369724 hasConceptScore W4321369724C192562407 @default.
- W4321369724 hasConceptScore W4321369724C196558001 @default.
- W4321369724 hasConceptScore W4321369724C21821499 @default.
- W4321369724 hasConceptScore W4321369724C21946209 @default.
- W4321369724 hasConceptScore W4321369724C2816523 @default.
- W4321369724 hasConceptScore W4321369724C41008148 @default.
- W4321369724 hasConceptScore W4321369724C44154836 @default.
- W4321369724 hasConceptScore W4321369724C50517652 @default.
- W4321369724 hasConceptScore W4321369724C57879066 @default.
- W4321369724 hasConceptScore W4321369724C64297162 @default.
- W4321369724 hasConceptScore W4321369724C78519656 @default.
- W4321369724 hasLocation W43213697241 @default.
- W4321369724 hasOpenAccess W4321369724 @default.
- W4321369724 hasPrimaryLocation W43213697241 @default.
- W4321369724 hasRelatedWork W1938556690 @default.
- W4321369724 hasRelatedWork W2000260723 @default.
- W4321369724 hasRelatedWork W2643784145 @default.
- W4321369724 hasRelatedWork W2754636322 @default.