Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321374367> ?p ?o ?g. }
- W4321374367 endingPage "2698" @default.
- W4321374367 startingPage "2698" @default.
- W4321374367 abstract "Parkinson’s disease is a neurodegenerative disease that is associated with genetic and environmental factors. However, the genes causing this degeneration have not been determined, and no reported cure exists for this disease. Recently, studies have been conducted to classify diseases with RNA-seq data using machine learning, and accurate diagnosis of diseases using machine learning is becoming an important task. In this study, we focus on how various feature selection methods can improve the performance of machine learning for accurate diagnosis of Parkinson’s disease. In addition, we analyzed the performance metrics and computational costs of running the model with and without various feature selection methods. Experiments were conducted using RNA sequencing—a technique that analyzes the transcription profiling of organisms using next-generation sequencing. Genetic algorithms (GA), information gain (IG), and wolf search algorithm (WSA) were employed as feature selection methods. Machine learning algorithms—extreme gradient boosting (XGBoost), deep neural network (DNN), support vector machine (SVM), and decision tree (DT)—were used as classifiers. Further, the model was evaluated using performance indicators, such as accuracy, precision, recall, F1 score, and receiver operating characteristic (ROC) curve. For XGBoost and DNN, feature selection methods based on GA, IG, and WSA improved the performance of machine learning by 10.00% and 38.18%, respectively. For SVM and DT, performance was improved by 0.91% and 7.27%, respectively, with feature selection methods based on IG and WSA. The results demonstrate that various feature selection methods improve the performance of machine learning when classifying Parkinson’s disease using RNA-seq data." @default.
- W4321374367 created "2023-02-21" @default.
- W4321374367 creator A5006119424 @default.
- W4321374367 creator A5028788096 @default.
- W4321374367 creator A5076130268 @default.
- W4321374367 date "2023-02-20" @default.
- W4321374367 modified "2023-09-26" @default.
- W4321374367 title "RNA Sequences-Based Diagnosis of Parkinson’s Disease Using Various Feature Selection Methods and Machine Learning" @default.
- W4321374367 cites W1444952417 @default.
- W4321374367 cites W1507582389 @default.
- W4321374367 cites W1878077977 @default.
- W4321374367 cites W1973802342 @default.
- W4321374367 cites W1981509058 @default.
- W4321374367 cites W1988995745 @default.
- W4321374367 cites W2025484710 @default.
- W4321374367 cites W2047094503 @default.
- W4321374367 cites W2069816479 @default.
- W4321374367 cites W2080779645 @default.
- W4321374367 cites W2093799708 @default.
- W4321374367 cites W2094023061 @default.
- W4321374367 cites W2100253618 @default.
- W4321374367 cites W2106819216 @default.
- W4321374367 cites W2118483385 @default.
- W4321374367 cites W2119387367 @default.
- W4321374367 cites W2126326837 @default.
- W4321374367 cites W2134513968 @default.
- W4321374367 cites W2172205306 @default.
- W4321374367 cites W2177784250 @default.
- W4321374367 cites W2284187495 @default.
- W4321374367 cites W2290432223 @default.
- W4321374367 cites W2483031229 @default.
- W4321374367 cites W2492595488 @default.
- W4321374367 cites W2499581503 @default.
- W4321374367 cites W2581682843 @default.
- W4321374367 cites W2614424865 @default.
- W4321374367 cites W2623843598 @default.
- W4321374367 cites W2688138122 @default.
- W4321374367 cites W2755012395 @default.
- W4321374367 cites W2762405304 @default.
- W4321374367 cites W2765606134 @default.
- W4321374367 cites W2780186126 @default.
- W4321374367 cites W2794866761 @default.
- W4321374367 cites W2795411881 @default.
- W4321374367 cites W2806419994 @default.
- W4321374367 cites W2806906525 @default.
- W4321374367 cites W2884430236 @default.
- W4321374367 cites W2889245000 @default.
- W4321374367 cites W2895084243 @default.
- W4321374367 cites W2923463496 @default.
- W4321374367 cites W2930433535 @default.
- W4321374367 cites W2936437926 @default.
- W4321374367 cites W2940010972 @default.
- W4321374367 cites W2972418846 @default.
- W4321374367 cites W2981792167 @default.
- W4321374367 cites W2984353870 @default.
- W4321374367 cites W2991254356 @default.
- W4321374367 cites W2995012791 @default.
- W4321374367 cites W2997558642 @default.
- W4321374367 cites W3003663164 @default.
- W4321374367 cites W3008674746 @default.
- W4321374367 cites W3012981875 @default.
- W4321374367 cites W3025026054 @default.
- W4321374367 cites W3102476541 @default.
- W4321374367 cites W3193790705 @default.
- W4321374367 cites W3200271877 @default.
- W4321374367 cites W4206113470 @default.
- W4321374367 cites W4211075681 @default.
- W4321374367 cites W4229376334 @default.
- W4321374367 cites W4229995854 @default.
- W4321374367 cites W4239510810 @default.
- W4321374367 cites W4250503569 @default.
- W4321374367 cites W4282594474 @default.
- W4321374367 cites W4285043979 @default.
- W4321374367 cites W4293045328 @default.
- W4321374367 cites W4299293190 @default.
- W4321374367 cites W4309311518 @default.
- W4321374367 cites W4312990635 @default.
- W4321374367 cites W4313328757 @default.
- W4321374367 cites W4313472908 @default.
- W4321374367 doi "https://doi.org/10.3390/app13042698" @default.
- W4321374367 hasPublicationYear "2023" @default.
- W4321374367 type Work @default.
- W4321374367 citedByCount "0" @default.
- W4321374367 crossrefType "journal-article" @default.
- W4321374367 hasAuthorship W4321374367A5006119424 @default.
- W4321374367 hasAuthorship W4321374367A5028788096 @default.
- W4321374367 hasAuthorship W4321374367A5076130268 @default.
- W4321374367 hasBestOaLocation W43213743671 @default.
- W4321374367 hasConcept C119857082 @default.
- W4321374367 hasConcept C12267149 @default.
- W4321374367 hasConcept C148483581 @default.
- W4321374367 hasConcept C153180895 @default.
- W4321374367 hasConcept C154945302 @default.
- W4321374367 hasConcept C41008148 @default.
- W4321374367 hasConcept C46686674 @default.
- W4321374367 hasConcept C50644808 @default.
- W4321374367 hasConcept C84525736 @default.
- W4321374367 hasConceptScore W4321374367C119857082 @default.