Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321377237> ?p ?o ?g. }
- W4321377237 endingPage "2288" @default.
- W4321377237 startingPage "2288" @default.
- W4321377237 abstract "Providing reliable detection of QRS complexes is key in automated analyses of electrocardiograms (ECG). Accurate and timely R-peak detections provide a basis for ECG-based diagnoses and to synchronize radiologic, electrophysiologic, or other medical devices. Compared with classical algorithms, deep learning (DL) architectures have demonstrated superior accuracy and high generalization capacity. Furthermore, they can be embedded on edge devices for real-time inference. 3D vectorcardiograms (VCG) provide a unifying framework for detecting R-peaks regardless of the acquisition strategy or number of ECG leads. In this article, a DL architecture was demonstrated to provide enhanced precision when trained and applied on 3D VCG, with no pre-processing nor post-processing steps. Experiments were conducted on four different public databases. Using the proposed approach, high F1-scores of 99.80% and 99.64% were achieved in leave-one-out cross-validation and cross-database validation protocols, respectively. False detections, measured by a precision of 99.88% or more, were significantly reduced compared with recent state-of-the-art methods tested on the same databases, without penalty in the number of missed peaks, measured by a recall of 99.39% or more. This approach can provide new applications for devices where precision, or positive predictive value, is essential, for instance cardiac magnetic resonance imaging." @default.
- W4321377237 created "2023-02-21" @default.
- W4321377237 creator A5014561683 @default.
- W4321377237 creator A5033670410 @default.
- W4321377237 creator A5064479140 @default.
- W4321377237 creator A5070163463 @default.
- W4321377237 date "2023-02-18" @default.
- W4321377237 modified "2023-10-14" @default.
- W4321377237 title "A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision" @default.
- W4321377237 cites W1001832214 @default.
- W4321377237 cites W1468476315 @default.
- W4321377237 cites W1564519958 @default.
- W4321377237 cites W1605480097 @default.
- W4321377237 cites W1838153045 @default.
- W4321377237 cites W1936273765 @default.
- W4321377237 cites W1969943621 @default.
- W4321377237 cites W1973163442 @default.
- W4321377237 cites W1977277774 @default.
- W4321377237 cites W1978033672 @default.
- W4321377237 cites W1978142137 @default.
- W4321377237 cites W1978878688 @default.
- W4321377237 cites W1983526697 @default.
- W4321377237 cites W2014976658 @default.
- W4321377237 cites W2024504058 @default.
- W4321377237 cites W2026638279 @default.
- W4321377237 cites W2028419679 @default.
- W4321377237 cites W2038436648 @default.
- W4321377237 cites W2047077837 @default.
- W4321377237 cites W2049368597 @default.
- W4321377237 cites W2049508112 @default.
- W4321377237 cites W2054421446 @default.
- W4321377237 cites W2064675550 @default.
- W4321377237 cites W2066226976 @default.
- W4321377237 cites W2077967181 @default.
- W4321377237 cites W2080883481 @default.
- W4321377237 cites W2090916474 @default.
- W4321377237 cites W2092394402 @default.
- W4321377237 cites W2095409369 @default.
- W4321377237 cites W2098816250 @default.
- W4321377237 cites W2099619765 @default.
- W4321377237 cites W2117539524 @default.
- W4321377237 cites W2143545157 @default.
- W4321377237 cites W2162273778 @default.
- W4321377237 cites W2162800060 @default.
- W4321377237 cites W2163430278 @default.
- W4321377237 cites W2172107473 @default.
- W4321377237 cites W2236428329 @default.
- W4321377237 cites W2285072859 @default.
- W4321377237 cites W2412490920 @default.
- W4321377237 cites W2547478161 @default.
- W4321377237 cites W2606820947 @default.
- W4321377237 cites W2621792621 @default.
- W4321377237 cites W2753762384 @default.
- W4321377237 cites W2766837055 @default.
- W4321377237 cites W2771630528 @default.
- W4321377237 cites W2784247182 @default.
- W4321377237 cites W2794550444 @default.
- W4321377237 cites W2794551875 @default.
- W4321377237 cites W2800952622 @default.
- W4321377237 cites W2809254203 @default.
- W4321377237 cites W2885591900 @default.
- W4321377237 cites W2888456553 @default.
- W4321377237 cites W2889505308 @default.
- W4321377237 cites W2898464675 @default.
- W4321377237 cites W2906113915 @default.
- W4321377237 cites W2919115771 @default.
- W4321377237 cites W2961074100 @default.
- W4321377237 cites W2970976899 @default.
- W4321377237 cites W2972255700 @default.
- W4321377237 cites W2977636290 @default.
- W4321377237 cites W2979268985 @default.
- W4321377237 cites W3000268448 @default.
- W4321377237 cites W3027572331 @default.
- W4321377237 cites W3030881691 @default.
- W4321377237 cites W3082645995 @default.
- W4321377237 cites W3085439927 @default.
- W4321377237 cites W3091994574 @default.
- W4321377237 cites W3095240076 @default.
- W4321377237 cites W3103316658 @default.
- W4321377237 cites W3119282903 @default.
- W4321377237 cites W3120627055 @default.
- W4321377237 cites W3120886412 @default.
- W4321377237 cites W3127657277 @default.
- W4321377237 cites W3129167842 @default.
- W4321377237 cites W3171411730 @default.
- W4321377237 cites W3172243723 @default.
- W4321377237 cites W3202835798 @default.
- W4321377237 cites W3204783986 @default.
- W4321377237 cites W3210468882 @default.
- W4321377237 cites W4200155034 @default.
- W4321377237 cites W4200315044 @default.
- W4321377237 cites W4206135956 @default.
- W4321377237 cites W4220814249 @default.
- W4321377237 cites W4224220194 @default.
- W4321377237 cites W4224285140 @default.
- W4321377237 cites W4224993403 @default.
- W4321377237 cites W4225388110 @default.
- W4321377237 cites W4226074837 @default.