Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321377700> ?p ?o ?g. }
- W4321377700 endingPage "304" @default.
- W4321377700 startingPage "304" @default.
- W4321377700 abstract "High-speed trains operate under varying conditions, leading to different distributions of vibration data collected from the wheel bearings. To detect bearing faults in situations where the source and target domains exhibit differing data distributions, the technique of transfer learning can be applied to move the distribution of features gleaned from unlabeled data in the source domain. However, traditional deep transfer learning techniques do not take into account the relationships between subdomains within the same class of different domains, resulting in suboptimal transfer learning performance and limiting the use of intelligent fault diagnosis for wheel bearings under various conditions. In order to tackle this problem, we have developed the Deep Subdomain Transfer Learning Network (DSTLN). This innovative approach transfers the distribution of features by harmonizing the subdomain distributions of layer activations specific to each domain through the implementation of the Local Maximum Mean Discrepancy (LMMD) method. The DSTLN consists of three modules: a feature extractor, fault category recognition, and domain adaptation. The feature extractor is constructed using a newly proposed SA-ConvLSTM model and CNNs, which aim to automatically learn features. The fault category recognition module is a classifier that categorizes the samples based on the extracted features. The domain adaptation module includes an adversarial domain classifier and subdomain distribution discrepancy metrics, making the learned features domain-invariant across both the global domain and subdomains. Through 210 transfer fault diagnosis experiments with wheel bearing data under 15 different operating conditions, the proposed method demonstrates its effectiveness." @default.
- W4321377700 created "2023-02-21" @default.
- W4321377700 creator A5021240025 @default.
- W4321377700 creator A5022853706 @default.
- W4321377700 creator A5026424418 @default.
- W4321377700 creator A5032883749 @default.
- W4321377700 date "2023-02-17" @default.
- W4321377700 modified "2023-10-17" @default.
- W4321377700 title "Deep Subdomain Transfer Learning with Spatial Attention ConvLSTM Network for Fault Diagnosis of Wheelset Bearing in High-Speed Trains" @default.
- W4321377700 cites W2136451929 @default.
- W4321377700 cites W2317595875 @default.
- W4321377700 cites W2771983901 @default.
- W4321377700 cites W2782497462 @default.
- W4321377700 cites W2792098970 @default.
- W4321377700 cites W2884585870 @default.
- W4321377700 cites W2884722635 @default.
- W4321377700 cites W2898375427 @default.
- W4321377700 cites W2905949437 @default.
- W4321377700 cites W2912412749 @default.
- W4321377700 cites W2952218682 @default.
- W4321377700 cites W2954154461 @default.
- W4321377700 cites W2980656849 @default.
- W4321377700 cites W2983932299 @default.
- W4321377700 cites W3007050866 @default.
- W4321377700 cites W3013183162 @default.
- W4321377700 cites W3021632667 @default.
- W4321377700 cites W3023920206 @default.
- W4321377700 cites W3025171967 @default.
- W4321377700 cites W3043650873 @default.
- W4321377700 cites W3060850527 @default.
- W4321377700 cites W3094862750 @default.
- W4321377700 cites W3114005625 @default.
- W4321377700 cites W3115321148 @default.
- W4321377700 cites W3121258721 @default.
- W4321377700 cites W3157862006 @default.
- W4321377700 cites W4210522264 @default.
- W4321377700 cites W4213199872 @default.
- W4321377700 cites W4295813927 @default.
- W4321377700 cites W4297268555 @default.
- W4321377700 cites W4303685477 @default.
- W4321377700 cites W4307939212 @default.
- W4321377700 cites W4309287803 @default.
- W4321377700 cites W4310056733 @default.
- W4321377700 cites W4311153905 @default.
- W4321377700 cites W4313389027 @default.
- W4321377700 doi "https://doi.org/10.3390/machines11020304" @default.
- W4321377700 hasPublicationYear "2023" @default.
- W4321377700 type Work @default.
- W4321377700 citedByCount "1" @default.
- W4321377700 countsByYear W43213777002023 @default.
- W4321377700 crossrefType "journal-article" @default.
- W4321377700 hasAuthorship W4321377700A5021240025 @default.
- W4321377700 hasAuthorship W4321377700A5022853706 @default.
- W4321377700 hasAuthorship W4321377700A5026424418 @default.
- W4321377700 hasAuthorship W4321377700A5032883749 @default.
- W4321377700 hasBestOaLocation W43213777001 @default.
- W4321377700 hasConcept C108583219 @default.
- W4321377700 hasConcept C117978034 @default.
- W4321377700 hasConcept C119857082 @default.
- W4321377700 hasConcept C127313418 @default.
- W4321377700 hasConcept C127413603 @default.
- W4321377700 hasConcept C150899416 @default.
- W4321377700 hasConcept C153180895 @default.
- W4321377700 hasConcept C154945302 @default.
- W4321377700 hasConcept C165205528 @default.
- W4321377700 hasConcept C175551986 @default.
- W4321377700 hasConcept C190839683 @default.
- W4321377700 hasConcept C205649164 @default.
- W4321377700 hasConcept C21880701 @default.
- W4321377700 hasConcept C41008148 @default.
- W4321377700 hasConcept C58640448 @default.
- W4321377700 hasConcept C95623464 @default.
- W4321377700 hasConceptScore W4321377700C108583219 @default.
- W4321377700 hasConceptScore W4321377700C117978034 @default.
- W4321377700 hasConceptScore W4321377700C119857082 @default.
- W4321377700 hasConceptScore W4321377700C127313418 @default.
- W4321377700 hasConceptScore W4321377700C127413603 @default.
- W4321377700 hasConceptScore W4321377700C150899416 @default.
- W4321377700 hasConceptScore W4321377700C153180895 @default.
- W4321377700 hasConceptScore W4321377700C154945302 @default.
- W4321377700 hasConceptScore W4321377700C165205528 @default.
- W4321377700 hasConceptScore W4321377700C175551986 @default.
- W4321377700 hasConceptScore W4321377700C190839683 @default.
- W4321377700 hasConceptScore W4321377700C205649164 @default.
- W4321377700 hasConceptScore W4321377700C21880701 @default.
- W4321377700 hasConceptScore W4321377700C41008148 @default.
- W4321377700 hasConceptScore W4321377700C58640448 @default.
- W4321377700 hasConceptScore W4321377700C95623464 @default.
- W4321377700 hasFunder F4320321001 @default.
- W4321377700 hasFunder F4320322163 @default.
- W4321377700 hasIssue "2" @default.
- W4321377700 hasLocation W43213777001 @default.
- W4321377700 hasLocation W43213777002 @default.
- W4321377700 hasOpenAccess W4321377700 @default.
- W4321377700 hasPrimaryLocation W43213777001 @default.
- W4321377700 hasRelatedWork W2889705046 @default.
- W4321377700 hasRelatedWork W2960456850 @default.
- W4321377700 hasRelatedWork W3136979370 @default.