Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321438588> ?p ?o ?g. }
- W4321438588 endingPage "138205" @default.
- W4321438588 startingPage "138205" @default.
- W4321438588 abstract "Sediment cores were collected from Taihu Lake in China. The chronology was determined by radionuclide. Heavy metals and magnetic properties of each core slice were assessed, respectively. The concentrations of most heavy metals in sediments surged at 20 cm from the surface, accompanying the increase in the concentrations of single-domain magnetic particles. This may be resulted from the influence of anthropic activities on the lake's environment after the 1970s. Two feature selection methods, random forest (RF) and maximal information coefficient (MIC), were combined with support vector machine (SVM) model to simulate heavy metals, with the inclusion of selected magnetic and physicochemical parameters. Compared with the modeling results obtained with the full set of parameters, a reasonable simulation performance was obtained with RF and MIC. RF performed better than MIC by increasing the R2 of simulation models for Cd, Cr, Cu, Pb, and Sb. For heavy metals with high ecological risks (As, Cd, Cr, Hg, Pb, Sb), the correlation coefficients for observed and predicted data ranged from 0.73 to 0.97 with only 14-27% of the parameters selected by RF as input variables. The RF-RBF-SVM enabled heavy metal predictions based on the magnetic properties of the lake sediments." @default.
- W4321438588 created "2023-02-22" @default.
- W4321438588 creator A5007729783 @default.
- W4321438588 creator A5014353611 @default.
- W4321438588 creator A5038507695 @default.
- W4321438588 creator A5040839623 @default.
- W4321438588 creator A5043494174 @default.
- W4321438588 creator A5072657723 @default.
- W4321438588 creator A5075969066 @default.
- W4321438588 creator A5079256068 @default.
- W4321438588 creator A5079700139 @default.
- W4321438588 date "2023-05-01" @default.
- W4321438588 modified "2023-10-17" @default.
- W4321438588 title "Improving the efficiency of machine learning in simulating sedimentary heavy metal contamination by coupling preposing feature selection methods" @default.
- W4321438588 cites W1489463871 @default.
- W4321438588 cites W1972568665 @default.
- W4321438588 cites W1986619627 @default.
- W4321438588 cites W2000310471 @default.
- W4321438588 cites W2003014312 @default.
- W4321438588 cites W2004567807 @default.
- W4321438588 cites W2017721076 @default.
- W4321438588 cites W2022184919 @default.
- W4321438588 cites W2051657390 @default.
- W4321438588 cites W2051999869 @default.
- W4321438588 cites W2061153572 @default.
- W4321438588 cites W2062487295 @default.
- W4321438588 cites W2064635825 @default.
- W4321438588 cites W2070284886 @default.
- W4321438588 cites W2085545258 @default.
- W4321438588 cites W2085700501 @default.
- W4321438588 cites W2090208275 @default.
- W4321438588 cites W2092866871 @default.
- W4321438588 cites W2098480551 @default.
- W4321438588 cites W2165700458 @default.
- W4321438588 cites W2274500974 @default.
- W4321438588 cites W2519982475 @default.
- W4321438588 cites W2579183337 @default.
- W4321438588 cites W2624094340 @default.
- W4321438588 cites W2765712828 @default.
- W4321438588 cites W2766249748 @default.
- W4321438588 cites W2789770454 @default.
- W4321438588 cites W2804449503 @default.
- W4321438588 cites W2899340836 @default.
- W4321438588 cites W2903899276 @default.
- W4321438588 cites W2905676609 @default.
- W4321438588 cites W2911964244 @default.
- W4321438588 cites W2913753126 @default.
- W4321438588 cites W2938115382 @default.
- W4321438588 cites W2965399647 @default.
- W4321438588 cites W2968496090 @default.
- W4321438588 cites W2980169251 @default.
- W4321438588 cites W2986617920 @default.
- W4321438588 cites W3038966175 @default.
- W4321438588 cites W3042493983 @default.
- W4321438588 cites W3083464428 @default.
- W4321438588 cites W3085992613 @default.
- W4321438588 cites W3119848472 @default.
- W4321438588 cites W3121158412 @default.
- W4321438588 cites W3136482290 @default.
- W4321438588 cites W3141356617 @default.
- W4321438588 cites W3159105291 @default.
- W4321438588 cites W3163436213 @default.
- W4321438588 cites W3200397009 @default.
- W4321438588 cites W3216922449 @default.
- W4321438588 cites W4206046985 @default.
- W4321438588 cites W4206922975 @default.
- W4321438588 cites W4280631805 @default.
- W4321438588 cites W4281648667 @default.
- W4321438588 cites W4378840981 @default.
- W4321438588 doi "https://doi.org/10.1016/j.chemosphere.2023.138205" @default.
- W4321438588 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36822525" @default.
- W4321438588 hasPublicationYear "2023" @default.
- W4321438588 type Work @default.
- W4321438588 citedByCount "1" @default.
- W4321438588 crossrefType "journal-article" @default.
- W4321438588 hasAuthorship W4321438588A5007729783 @default.
- W4321438588 hasAuthorship W4321438588A5014353611 @default.
- W4321438588 hasAuthorship W4321438588A5038507695 @default.
- W4321438588 hasAuthorship W4321438588A5040839623 @default.
- W4321438588 hasAuthorship W4321438588A5043494174 @default.
- W4321438588 hasAuthorship W4321438588A5072657723 @default.
- W4321438588 hasAuthorship W4321438588A5075969066 @default.
- W4321438588 hasAuthorship W4321438588A5079256068 @default.
- W4321438588 hasAuthorship W4321438588A5079700139 @default.
- W4321438588 hasConcept C107872376 @default.
- W4321438588 hasConcept C112570922 @default.
- W4321438588 hasConcept C119857082 @default.
- W4321438588 hasConcept C12267149 @default.
- W4321438588 hasConcept C127313418 @default.
- W4321438588 hasConcept C148483581 @default.
- W4321438588 hasConcept C151730666 @default.
- W4321438588 hasConcept C169258074 @default.
- W4321438588 hasConcept C185592680 @default.
- W4321438588 hasConcept C18903297 @default.
- W4321438588 hasConcept C191897082 @default.
- W4321438588 hasConcept C192562407 @default.
- W4321438588 hasConcept C199289684 @default.
- W4321438588 hasConcept C2776053758 @default.