Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321445817> ?p ?o ?g. }
- W4321445817 endingPage "e230191" @default.
- W4321445817 startingPage "e230191" @default.
- W4321445817 abstract "Earlier detection of emerging novel SARS-COV-2 variants is important for public health surveillance of potential viral threats and for earlier prevention research. Artificial intelligence may facilitate early detection of SARS-CoV2 emerging novel variants based on variant-specific mutation haplotypes and, in turn, be associated with enhanced implementation of risk-stratified public health prevention strategies.To develop a haplotype-based artificial intelligence (HAI) model for identifying novel variants, including mixture variants (MVs) of known variants and new variants with novel mutations.This cross-sectional study used serially observed viral genomic sequences globally (prior to March 14, 2022) to train and validate the HAI model and used it to identify variants arising from a prospective set of viruses from March 15 to May 18, 2022.Viral sequences, collection dates, and locations were subjected to statistical learning analysis to estimate variant-specific core mutations and haplotype frequencies, which were then used to construct an HAI model to identify novel variants.Through training on more than 5 million viral sequences, an HAI model was built, and its identification performance was validated on an independent validation set of more than 5 million viruses. Its identification performance was assessed on a prospective set of 344 901 viruses. In addition to achieving an accuracy of 92.8% (95% CI within 0.1%), the HAI model identified 4 Omicron MVs (Omicron-Alpha, Omicron-Delta, Omicron-Epsilon, and Omicron-Zeta), 2 Delta MVs (Delta-Kappa and Delta-Zeta), and 1 Alpha-Epsilon MV, among which Omicron-Epsilon MVs were most frequent (609/657 MVs [92.7%]). Furthermore, the HAI model found that 1699 Omicron viruses had unidentifiable variants given that these variants acquired novel mutations. Lastly, 524 variant-unassigned and variant-unidentifiable viruses carried 16 novel mutations, 8 of which were increasing in prevalence percentages as of May 2022.In this cross-sectional study, an HAI model found SARS-COV-2 viruses with MV or novel mutations in the global population, which may require closer examination and monitoring. These results suggest that HAI may complement phylogenic variant assignment, providing additional insights into emerging novel variants in the population." @default.
- W4321445817 created "2023-02-22" @default.
- W4321445817 creator A5005949750 @default.
- W4321445817 creator A5011753502 @default.
- W4321445817 creator A5014597522 @default.
- W4321445817 creator A5030600192 @default.
- W4321445817 creator A5041885995 @default.
- W4321445817 creator A5044271442 @default.
- W4321445817 creator A5061167455 @default.
- W4321445817 creator A5078740022 @default.
- W4321445817 creator A5090963692 @default.
- W4321445817 date "2023-02-21" @default.
- W4321445817 modified "2023-09-30" @default.
- W4321445817 title "Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations" @default.
- W4321445817 cites W1764830159 @default.
- W4321445817 cites W2037789405 @default.
- W4321445817 cites W2092339835 @default.
- W4321445817 cites W2155998147 @default.
- W4321445817 cites W2163278718 @default.
- W4321445817 cites W2605343262 @default.
- W4321445817 cites W2952045272 @default.
- W4321445817 cites W3043124965 @default.
- W4321445817 cites W3088777520 @default.
- W4321445817 cites W3125011956 @default.
- W4321445817 cites W3135330127 @default.
- W4321445817 cites W3148041504 @default.
- W4321445817 cites W3160568774 @default.
- W4321445817 cites W3161034134 @default.
- W4321445817 cites W3162454605 @default.
- W4321445817 cites W3165153899 @default.
- W4321445817 cites W3169942726 @default.
- W4321445817 cites W3176993778 @default.
- W4321445817 cites W3187717873 @default.
- W4321445817 cites W3200130214 @default.
- W4321445817 cites W4200137031 @default.
- W4321445817 cites W4200234842 @default.
- W4321445817 cites W4200409424 @default.
- W4321445817 cites W4206923771 @default.
- W4321445817 cites W4214579542 @default.
- W4321445817 cites W4221075631 @default.
- W4321445817 cites W4224297739 @default.
- W4321445817 cites W4225492776 @default.
- W4321445817 cites W4225851399 @default.
- W4321445817 cites W4281631942 @default.
- W4321445817 cites W4281653060 @default.
- W4321445817 cites W4285999471 @default.
- W4321445817 cites W4306862545 @default.
- W4321445817 doi "https://doi.org/10.1001/jamanetworkopen.2023.0191" @default.
- W4321445817 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36809468" @default.
- W4321445817 hasPublicationYear "2023" @default.
- W4321445817 type Work @default.
- W4321445817 citedByCount "0" @default.
- W4321445817 crossrefType "journal-article" @default.
- W4321445817 hasAuthorship W4321445817A5005949750 @default.
- W4321445817 hasAuthorship W4321445817A5011753502 @default.
- W4321445817 hasAuthorship W4321445817A5014597522 @default.
- W4321445817 hasAuthorship W4321445817A5030600192 @default.
- W4321445817 hasAuthorship W4321445817A5041885995 @default.
- W4321445817 hasAuthorship W4321445817A5044271442 @default.
- W4321445817 hasAuthorship W4321445817A5061167455 @default.
- W4321445817 hasAuthorship W4321445817A5078740022 @default.
- W4321445817 hasAuthorship W4321445817A5090963692 @default.
- W4321445817 hasBestOaLocation W43214458171 @default.
- W4321445817 hasConcept C104317684 @default.
- W4321445817 hasConcept C116834253 @default.
- W4321445817 hasConcept C135763542 @default.
- W4321445817 hasConcept C142724271 @default.
- W4321445817 hasConcept C197754878 @default.
- W4321445817 hasConcept C2779134260 @default.
- W4321445817 hasConcept C2993967602 @default.
- W4321445817 hasConcept C3007834351 @default.
- W4321445817 hasConcept C3008058167 @default.
- W4321445817 hasConcept C501734568 @default.
- W4321445817 hasConcept C524204448 @default.
- W4321445817 hasConcept C54355233 @default.
- W4321445817 hasConcept C59822182 @default.
- W4321445817 hasConcept C70721500 @default.
- W4321445817 hasConcept C71924100 @default.
- W4321445817 hasConcept C86803240 @default.
- W4321445817 hasConceptScore W4321445817C104317684 @default.
- W4321445817 hasConceptScore W4321445817C116834253 @default.
- W4321445817 hasConceptScore W4321445817C135763542 @default.
- W4321445817 hasConceptScore W4321445817C142724271 @default.
- W4321445817 hasConceptScore W4321445817C197754878 @default.
- W4321445817 hasConceptScore W4321445817C2779134260 @default.
- W4321445817 hasConceptScore W4321445817C2993967602 @default.
- W4321445817 hasConceptScore W4321445817C3007834351 @default.
- W4321445817 hasConceptScore W4321445817C3008058167 @default.
- W4321445817 hasConceptScore W4321445817C501734568 @default.
- W4321445817 hasConceptScore W4321445817C524204448 @default.
- W4321445817 hasConceptScore W4321445817C54355233 @default.
- W4321445817 hasConceptScore W4321445817C59822182 @default.
- W4321445817 hasConceptScore W4321445817C70721500 @default.
- W4321445817 hasConceptScore W4321445817C71924100 @default.
- W4321445817 hasConceptScore W4321445817C86803240 @default.
- W4321445817 hasIssue "2" @default.
- W4321445817 hasLocation W43214458171 @default.
- W4321445817 hasLocation W43214458172 @default.