Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321447691> ?p ?o ?g. }
- W4321447691 endingPage "1298" @default.
- W4321447691 startingPage "1288" @default.
- W4321447691 abstract "Objective The primary objective of this study was to quantify the contributions to drug release for thermal and non-thermal mechanisms in ultrasound-induced release from gold nanoparticles (GNPs) for the first time. Methods We studied doxorubicin (DOX) and curcumin release from the surface of GNPs using two different methods to induce drug release in an ex vivo tissue model: (i) localized tissue heating with a water bath and (ii) low-intensity pulsed ultrasound (LIPUS) exposure. Both methods have similar temperature profiles and can induce the release of both hydrophobic (curcumin) and hydrophilic (DOX) drugs from the surface of GNPs. Quantitative drug release in both cases was compared via fluorescence measurements. Discussion The water bath heating method induced drug release using thermal effects only, whereas LIPUS exposure induced drug release used a combination of thermal and non-thermal mechanisms. It was found that there were increases of 70 ± 16% (curcumin) and 127 ± 20% (DOX) in drug release when LIPUS was used to induce drug release (both thermal and non-thermal mechanisms) as compared with the water bath (thermal mechanisms only) mediated release. Conclusion We determined that non-thermal mechanisms account for 41 ± 3% of curcumin release and 56 ± 4% of DOX release. It was concluded that in our ex vivo tissue model, the non-thermal mechanisms play a significant role in LIPUS-induced drug release from GNP drug carriers and that the contributions of non-thermal mechanisms to drug release depend on the type of anticancer drug loaded on the GNP surface. The primary objective of this study was to quantify the contributions to drug release for thermal and non-thermal mechanisms in ultrasound-induced release from gold nanoparticles (GNPs) for the first time. We studied doxorubicin (DOX) and curcumin release from the surface of GNPs using two different methods to induce drug release in an ex vivo tissue model: (i) localized tissue heating with a water bath and (ii) low-intensity pulsed ultrasound (LIPUS) exposure. Both methods have similar temperature profiles and can induce the release of both hydrophobic (curcumin) and hydrophilic (DOX) drugs from the surface of GNPs. Quantitative drug release in both cases was compared via fluorescence measurements. The water bath heating method induced drug release using thermal effects only, whereas LIPUS exposure induced drug release used a combination of thermal and non-thermal mechanisms. It was found that there were increases of 70 ± 16% (curcumin) and 127 ± 20% (DOX) in drug release when LIPUS was used to induce drug release (both thermal and non-thermal mechanisms) as compared with the water bath (thermal mechanisms only) mediated release. We determined that non-thermal mechanisms account for 41 ± 3% of curcumin release and 56 ± 4% of DOX release. It was concluded that in our ex vivo tissue model, the non-thermal mechanisms play a significant role in LIPUS-induced drug release from GNP drug carriers and that the contributions of non-thermal mechanisms to drug release depend on the type of anticancer drug loaded on the GNP surface." @default.
- W4321447691 created "2023-02-22" @default.
- W4321447691 creator A5001025496 @default.
- W4321447691 creator A5027024186 @default.
- W4321447691 creator A5042201308 @default.
- W4321447691 creator A5089711938 @default.
- W4321447691 date "2023-05-01" @default.
- W4321447691 modified "2023-09-27" @default.
- W4321447691 title "A Quantitative Study of Thermal and Non-thermal Mechanisms in Ultrasound-Induced Nano-drug Delivery" @default.
- W4321447691 cites W1987079358 @default.
- W4321447691 cites W1996697333 @default.
- W4321447691 cites W2000144812 @default.
- W4321447691 cites W2007011945 @default.
- W4321447691 cites W2026319736 @default.
- W4321447691 cites W2043097112 @default.
- W4321447691 cites W2046890061 @default.
- W4321447691 cites W2052412821 @default.
- W4321447691 cites W2056574965 @default.
- W4321447691 cites W2065617439 @default.
- W4321447691 cites W2097103399 @default.
- W4321447691 cites W2113614699 @default.
- W4321447691 cites W2126319786 @default.
- W4321447691 cites W2129998516 @default.
- W4321447691 cites W2130243478 @default.
- W4321447691 cites W2130550959 @default.
- W4321447691 cites W2325501848 @default.
- W4321447691 cites W2725987930 @default.
- W4321447691 cites W2784293791 @default.
- W4321447691 cites W2791115421 @default.
- W4321447691 cites W2883723066 @default.
- W4321447691 cites W2884606057 @default.
- W4321447691 cites W2889646458 @default.
- W4321447691 cites W2891478271 @default.
- W4321447691 cites W2918971228 @default.
- W4321447691 cites W2924968160 @default.
- W4321447691 cites W2974011264 @default.
- W4321447691 cites W2991551590 @default.
- W4321447691 cites W2999269165 @default.
- W4321447691 cites W3016986029 @default.
- W4321447691 cites W3017566524 @default.
- W4321447691 cites W3038301476 @default.
- W4321447691 cites W3090776198 @default.
- W4321447691 cites W3092118039 @default.
- W4321447691 cites W3112720293 @default.
- W4321447691 cites W3124777985 @default.
- W4321447691 cites W3170714444 @default.
- W4321447691 cites W3203390765 @default.
- W4321447691 cites W4214923897 @default.
- W4321447691 cites W4316664429 @default.
- W4321447691 doi "https://doi.org/10.1016/j.ultrasmedbio.2023.01.015" @default.
- W4321447691 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36822894" @default.
- W4321447691 hasPublicationYear "2023" @default.
- W4321447691 type Work @default.
- W4321447691 citedByCount "3" @default.
- W4321447691 countsByYear W43214476912023 @default.
- W4321447691 crossrefType "journal-article" @default.
- W4321447691 hasAuthorship W4321447691A5001025496 @default.
- W4321447691 hasAuthorship W4321447691A5027024186 @default.
- W4321447691 hasAuthorship W4321447691A5042201308 @default.
- W4321447691 hasAuthorship W4321447691A5089711938 @default.
- W4321447691 hasConcept C12554922 @default.
- W4321447691 hasConcept C141071460 @default.
- W4321447691 hasConcept C150903083 @default.
- W4321447691 hasConcept C178790620 @default.
- W4321447691 hasConcept C185592680 @default.
- W4321447691 hasConcept C202751555 @default.
- W4321447691 hasConcept C207001950 @default.
- W4321447691 hasConcept C26291073 @default.
- W4321447691 hasConcept C2776694085 @default.
- W4321447691 hasConcept C2778250585 @default.
- W4321447691 hasConcept C2779820397 @default.
- W4321447691 hasConcept C2780035454 @default.
- W4321447691 hasConcept C2781303535 @default.
- W4321447691 hasConcept C55493867 @default.
- W4321447691 hasConcept C71924100 @default.
- W4321447691 hasConcept C86803240 @default.
- W4321447691 hasConcept C98274493 @default.
- W4321447691 hasConceptScore W4321447691C12554922 @default.
- W4321447691 hasConceptScore W4321447691C141071460 @default.
- W4321447691 hasConceptScore W4321447691C150903083 @default.
- W4321447691 hasConceptScore W4321447691C178790620 @default.
- W4321447691 hasConceptScore W4321447691C185592680 @default.
- W4321447691 hasConceptScore W4321447691C202751555 @default.
- W4321447691 hasConceptScore W4321447691C207001950 @default.
- W4321447691 hasConceptScore W4321447691C26291073 @default.
- W4321447691 hasConceptScore W4321447691C2776694085 @default.
- W4321447691 hasConceptScore W4321447691C2778250585 @default.
- W4321447691 hasConceptScore W4321447691C2779820397 @default.
- W4321447691 hasConceptScore W4321447691C2780035454 @default.
- W4321447691 hasConceptScore W4321447691C2781303535 @default.
- W4321447691 hasConceptScore W4321447691C55493867 @default.
- W4321447691 hasConceptScore W4321447691C71924100 @default.
- W4321447691 hasConceptScore W4321447691C86803240 @default.
- W4321447691 hasConceptScore W4321447691C98274493 @default.
- W4321447691 hasIssue "5" @default.
- W4321447691 hasLocation W43214476911 @default.
- W4321447691 hasLocation W43214476912 @default.
- W4321447691 hasOpenAccess W4321447691 @default.