Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321448327> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4321448327 endingPage "780" @default.
- W4321448327 startingPage "772" @default.
- W4321448327 abstract "Automated machine learning (AutoML) frameworks have become important tools in the data scientist's arsenal, as they dramatically reduce the manual work devoted to the construction of ML pipelines. Such frameworks intelligently search among millions of possible ML pipelines - typically containing feature engineering, model selection, and hyper parameters tuning steps - and finally output an optimal pipeline in terms of predictive accuracy. However, when the dataset is large, each individual configuration takes longer to execute, therefore the overall AutoML running times become increasingly high. To this end, we present SubStrat, an AutoML optimization strategy that tackles the data size, rather than configuration space. It wraps existing AutoML tools, and instead of executing them directly on the entire dataset, SubStrat uses a genetic-based algorithm to find a small yet representative data subset that preserves a particular characteristic of the full data. It then employs the AutoML tool on the small subset, and finally, it refines the resulting pipeline by executing a restricted, much shorter, AutoML process on the large dataset. Our experimental results, performed on three popular AutoML frameworks, Auto-Sklearn, TPOT, and H2O show that SubStrat reduces their running times by 76.3% (on average), with only a 4.15% average decrease in the accuracy of the resulting ML pipeline." @default.
- W4321448327 created "2023-02-22" @default.
- W4321448327 creator A5037956466 @default.
- W4321448327 creator A5040655769 @default.
- W4321448327 creator A5041000511 @default.
- W4321448327 date "2022-12-01" @default.
- W4321448327 modified "2023-09-24" @default.
- W4321448327 title "SubStrat" @default.
- W4321448327 cites W1969906866 @default.
- W4321448327 cites W2099799055 @default.
- W4321448327 cites W2126668662 @default.
- W4321448327 cites W2167101736 @default.
- W4321448327 cites W2947459187 @default.
- W4321448327 cites W2966284335 @default.
- W4321448327 cites W3006913750 @default.
- W4321448327 cites W3101380508 @default.
- W4321448327 cites W3197684911 @default.
- W4321448327 cites W3201904098 @default.
- W4321448327 cites W3211229017 @default.
- W4321448327 cites W4250503569 @default.
- W4321448327 cites W4255361718 @default.
- W4321448327 cites W760598031 @default.
- W4321448327 doi "https://doi.org/10.14778/3574245.3574261" @default.
- W4321448327 hasPublicationYear "2022" @default.
- W4321448327 type Work @default.
- W4321448327 citedByCount "3" @default.
- W4321448327 countsByYear W43214483272022 @default.
- W4321448327 countsByYear W43214483272023 @default.
- W4321448327 crossrefType "journal-article" @default.
- W4321448327 hasAuthorship W4321448327A5037956466 @default.
- W4321448327 hasAuthorship W4321448327A5040655769 @default.
- W4321448327 hasAuthorship W4321448327A5041000511 @default.
- W4321448327 hasConcept C119857082 @default.
- W4321448327 hasConcept C124101348 @default.
- W4321448327 hasConcept C138885662 @default.
- W4321448327 hasConcept C148483581 @default.
- W4321448327 hasConcept C154945302 @default.
- W4321448327 hasConcept C199360897 @default.
- W4321448327 hasConcept C2776401178 @default.
- W4321448327 hasConcept C41008148 @default.
- W4321448327 hasConcept C41895202 @default.
- W4321448327 hasConcept C43521106 @default.
- W4321448327 hasConcept C81917197 @default.
- W4321448327 hasConcept C98045186 @default.
- W4321448327 hasConceptScore W4321448327C119857082 @default.
- W4321448327 hasConceptScore W4321448327C124101348 @default.
- W4321448327 hasConceptScore W4321448327C138885662 @default.
- W4321448327 hasConceptScore W4321448327C148483581 @default.
- W4321448327 hasConceptScore W4321448327C154945302 @default.
- W4321448327 hasConceptScore W4321448327C199360897 @default.
- W4321448327 hasConceptScore W4321448327C2776401178 @default.
- W4321448327 hasConceptScore W4321448327C41008148 @default.
- W4321448327 hasConceptScore W4321448327C41895202 @default.
- W4321448327 hasConceptScore W4321448327C43521106 @default.
- W4321448327 hasConceptScore W4321448327C81917197 @default.
- W4321448327 hasConceptScore W4321448327C98045186 @default.
- W4321448327 hasIssue "4" @default.
- W4321448327 hasLocation W43214483271 @default.
- W4321448327 hasOpenAccess W4321448327 @default.
- W4321448327 hasPrimaryLocation W43214483271 @default.
- W4321448327 hasRelatedWork W2973799232 @default.
- W4321448327 hasRelatedWork W3163334550 @default.
- W4321448327 hasRelatedWork W3174196512 @default.
- W4321448327 hasRelatedWork W3200179079 @default.
- W4321448327 hasRelatedWork W3214370095 @default.
- W4321448327 hasRelatedWork W4212852473 @default.
- W4321448327 hasRelatedWork W4225307033 @default.
- W4321448327 hasRelatedWork W4225355128 @default.
- W4321448327 hasRelatedWork W4225360065 @default.
- W4321448327 hasRelatedWork W4293525103 @default.
- W4321448327 hasVolume "16" @default.
- W4321448327 isParatext "false" @default.
- W4321448327 isRetracted "false" @default.
- W4321448327 workType "article" @default.