Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321459767> ?p ?o ?g. }
- W4321459767 endingPage "86" @default.
- W4321459767 startingPage "86" @default.
- W4321459767 abstract "The agriculture sector plays a crucial role in supplying nutritious and high-quality food. Plant disorders significantly impact crop productivity, resulting in an annual loss of 33%. The early and accurate detection of plant disorders is a difficult task for farmers and requires specialized knowledge, significant effort, and labor. In this context, smart devices and advanced artificial intelligence techniques have significant potential to pave the way toward sustainable and smart agriculture. This paper presents a deep learning-based android system that can diagnose ginger plant disorders such as soft rot disease, pest patterns, and nutritional deficiencies. To achieve this, state-of-the-art deep learning models were trained on a real dataset of 4,394 ginger leaf images with diverse backgrounds. The trained models were then integrated into an Android-based mobile application that takes ginger leaf images as input and performs the real-time detection of crop disorders. The proposed system shows promising results in terms of accuracy, precision, recall, confusion matrices, computational cost, Matthews correlation coefficient (MCC), mAP, and F1-score." @default.
- W4321459767 created "2023-02-22" @default.
- W4321459767 creator A5009589766 @default.
- W4321459767 creator A5029329870 @default.
- W4321459767 creator A5035335908 @default.
- W4321459767 creator A5042088789 @default.
- W4321459767 creator A5055315800 @default.
- W4321459767 creator A5063319463 @default.
- W4321459767 date "2023-02-21" @default.
- W4321459767 modified "2023-10-06" @default.
- W4321459767 title "A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning" @default.
- W4321459767 cites W2117539524 @default.
- W4321459767 cites W2473156356 @default.
- W4321459767 cites W2598645336 @default.
- W4321459767 cites W2612844455 @default.
- W4321459767 cites W2731165298 @default.
- W4321459767 cites W2758216428 @default.
- W4321459767 cites W2786538427 @default.
- W4321459767 cites W2886590014 @default.
- W4321459767 cites W2902625477 @default.
- W4321459767 cites W2910363199 @default.
- W4321459767 cites W2911433502 @default.
- W4321459767 cites W2923504698 @default.
- W4321459767 cites W2937772171 @default.
- W4321459767 cites W2938959907 @default.
- W4321459767 cites W2954187519 @default.
- W4321459767 cites W2955365692 @default.
- W4321459767 cites W2979623549 @default.
- W4321459767 cites W2998868568 @default.
- W4321459767 cites W3003067960 @default.
- W4321459767 cites W3012947883 @default.
- W4321459767 cites W3013475455 @default.
- W4321459767 cites W3014860971 @default.
- W4321459767 cites W3042011474 @default.
- W4321459767 cites W3047988893 @default.
- W4321459767 cites W3083473462 @default.
- W4321459767 cites W3108454656 @default.
- W4321459767 cites W3121328550 @default.
- W4321459767 cites W3127078297 @default.
- W4321459767 cites W3161008321 @default.
- W4321459767 cites W3168868253 @default.
- W4321459767 cites W3190789542 @default.
- W4321459767 cites W3204309289 @default.
- W4321459767 cites W4213228186 @default.
- W4321459767 cites W4281490049 @default.
- W4321459767 cites W4283641746 @default.
- W4321459767 cites W4283828342 @default.
- W4321459767 cites W4290997076 @default.
- W4321459767 cites W4296218720 @default.
- W4321459767 doi "https://doi.org/10.3390/fi15030086" @default.
- W4321459767 hasPublicationYear "2023" @default.
- W4321459767 type Work @default.
- W4321459767 citedByCount "2" @default.
- W4321459767 countsByYear W43214597672023 @default.
- W4321459767 crossrefType "journal-article" @default.
- W4321459767 hasAuthorship W4321459767A5009589766 @default.
- W4321459767 hasAuthorship W4321459767A5029329870 @default.
- W4321459767 hasAuthorship W4321459767A5035335908 @default.
- W4321459767 hasAuthorship W4321459767A5042088789 @default.
- W4321459767 hasAuthorship W4321459767A5055315800 @default.
- W4321459767 hasAuthorship W4321459767A5063319463 @default.
- W4321459767 hasBestOaLocation W43214597671 @default.
- W4321459767 hasConcept C108583219 @default.
- W4321459767 hasConcept C111919701 @default.
- W4321459767 hasConcept C118518473 @default.
- W4321459767 hasConcept C119857082 @default.
- W4321459767 hasConcept C120217122 @default.
- W4321459767 hasConcept C127413603 @default.
- W4321459767 hasConcept C151730666 @default.
- W4321459767 hasConcept C154945302 @default.
- W4321459767 hasConcept C169258074 @default.
- W4321459767 hasConcept C18903297 @default.
- W4321459767 hasConcept C2779343474 @default.
- W4321459767 hasConcept C3017891749 @default.
- W4321459767 hasConcept C41008148 @default.
- W4321459767 hasConcept C557433098 @default.
- W4321459767 hasConcept C86803240 @default.
- W4321459767 hasConcept C88463610 @default.
- W4321459767 hasConceptScore W4321459767C108583219 @default.
- W4321459767 hasConceptScore W4321459767C111919701 @default.
- W4321459767 hasConceptScore W4321459767C118518473 @default.
- W4321459767 hasConceptScore W4321459767C119857082 @default.
- W4321459767 hasConceptScore W4321459767C120217122 @default.
- W4321459767 hasConceptScore W4321459767C127413603 @default.
- W4321459767 hasConceptScore W4321459767C151730666 @default.
- W4321459767 hasConceptScore W4321459767C154945302 @default.
- W4321459767 hasConceptScore W4321459767C169258074 @default.
- W4321459767 hasConceptScore W4321459767C18903297 @default.
- W4321459767 hasConceptScore W4321459767C2779343474 @default.
- W4321459767 hasConceptScore W4321459767C3017891749 @default.
- W4321459767 hasConceptScore W4321459767C41008148 @default.
- W4321459767 hasConceptScore W4321459767C557433098 @default.
- W4321459767 hasConceptScore W4321459767C86803240 @default.
- W4321459767 hasConceptScore W4321459767C88463610 @default.
- W4321459767 hasIssue "3" @default.
- W4321459767 hasLocation W43214597671 @default.
- W4321459767 hasOpenAccess W4321459767 @default.
- W4321459767 hasPrimaryLocation W43214597671 @default.