Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321460256> ?p ?o ?g. }
- W4321460256 endingPage "109164" @default.
- W4321460256 startingPage "109164" @default.
- W4321460256 abstract "This paper proposes an efficient reliability-based design optimization (RBDO) method that advantageously decouples comprehensive learning particle swarm optimization (CLPSO) algorithm with Gaussian process regression (GPR) model, termed as GPR-CLPSO. The method iteratively performs the CLPSO with deterministic parameters based on the most probable point (MPP) underpinning limit-state functions (LSFs) iteratively updated by the active learning reliability evaluation process. The GPR model approximates, from the design data given by CLPSO, the spectrum of LSFs under random parameters, and hence enables a significant computational reduction of Monte-Carlo simulations (MCSs) for failure probability approximation. The expected feasibility function is maximized using the CLPSO code to systematically refine the GPR model by adaptively adding new (intelligent) learning points in the region with high-reliability sensitivity leading to the more accurate prediction of failure probability. A novel inverse MCS constraint boundary method is developed to redefine the MPP assigned for the CLPSO algorithm in determining the new optimal design. The method efficiently leverages the decoupling approach, whilst significantly alleviating computing efforts, to quickly and accurately capture the optimal RBDO design. The resulting failure probability well satisfies the allowable limit. Four RBDO examples are provided to illustrate applications and robustness of the proposed decoupling GPR-CLPSO approach." @default.
- W4321460256 created "2023-02-22" @default.
- W4321460256 creator A5020824023 @default.
- W4321460256 creator A5025913685 @default.
- W4321460256 creator A5075577197 @default.
- W4321460256 creator A5076259271 @default.
- W4321460256 creator A5084871384 @default.
- W4321460256 date "2023-07-01" @default.
- W4321460256 modified "2023-10-13" @default.
- W4321460256 title "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization" @default.
- W4321460256 cites W1968191585 @default.
- W4321460256 cites W1989763695 @default.
- W4321460256 cites W2023034439 @default.
- W4321460256 cites W2026833164 @default.
- W4321460256 cites W2046332946 @default.
- W4321460256 cites W2067086424 @default.
- W4321460256 cites W2068223080 @default.
- W4321460256 cites W2071043722 @default.
- W4321460256 cites W2090314033 @default.
- W4321460256 cites W2100967682 @default.
- W4321460256 cites W2102059395 @default.
- W4321460256 cites W2126849813 @default.
- W4321460256 cites W2131613989 @default.
- W4321460256 cites W2149183242 @default.
- W4321460256 cites W2178011284 @default.
- W4321460256 cites W2190499735 @default.
- W4321460256 cites W2194088729 @default.
- W4321460256 cites W2195310703 @default.
- W4321460256 cites W2301983493 @default.
- W4321460256 cites W2330307775 @default.
- W4321460256 cites W2468364493 @default.
- W4321460256 cites W2580336769 @default.
- W4321460256 cites W2588767931 @default.
- W4321460256 cites W2618016320 @default.
- W4321460256 cites W2724979376 @default.
- W4321460256 cites W2732319205 @default.
- W4321460256 cites W2804446681 @default.
- W4321460256 cites W2810573578 @default.
- W4321460256 cites W2920244235 @default.
- W4321460256 cites W2920929604 @default.
- W4321460256 cites W2925351056 @default.
- W4321460256 cites W2941873136 @default.
- W4321460256 cites W2944802573 @default.
- W4321460256 cites W2946167663 @default.
- W4321460256 cites W2965490185 @default.
- W4321460256 cites W2970256756 @default.
- W4321460256 cites W2990877229 @default.
- W4321460256 cites W3005743814 @default.
- W4321460256 cites W3097333743 @default.
- W4321460256 cites W3109477617 @default.
- W4321460256 cites W3110828371 @default.
- W4321460256 cites W3120470408 @default.
- W4321460256 cites W3121584373 @default.
- W4321460256 cites W3146176359 @default.
- W4321460256 cites W3157896191 @default.
- W4321460256 cites W3158212287 @default.
- W4321460256 cites W3185159669 @default.
- W4321460256 cites W3186286323 @default.
- W4321460256 cites W3197381489 @default.
- W4321460256 cites W3217291690 @default.
- W4321460256 cites W4213062069 @default.
- W4321460256 cites W4214521484 @default.
- W4321460256 cites W4214605105 @default.
- W4321460256 cites W4224304115 @default.
- W4321460256 cites W4281774146 @default.
- W4321460256 doi "https://doi.org/10.1016/j.ress.2023.109164" @default.
- W4321460256 hasPublicationYear "2023" @default.
- W4321460256 type Work @default.
- W4321460256 citedByCount "4" @default.
- W4321460256 countsByYear W43214602562023 @default.
- W4321460256 crossrefType "journal-article" @default.
- W4321460256 hasAuthorship W4321460256A5020824023 @default.
- W4321460256 hasAuthorship W4321460256A5025913685 @default.
- W4321460256 hasAuthorship W4321460256A5075577197 @default.
- W4321460256 hasAuthorship W4321460256A5076259271 @default.
- W4321460256 hasAuthorship W4321460256A5084871384 @default.
- W4321460256 hasConcept C104317684 @default.
- W4321460256 hasConcept C105795698 @default.
- W4321460256 hasConcept C11413529 @default.
- W4321460256 hasConcept C119857082 @default.
- W4321460256 hasConcept C121332964 @default.
- W4321460256 hasConcept C126255220 @default.
- W4321460256 hasConcept C131675550 @default.
- W4321460256 hasConcept C163716315 @default.
- W4321460256 hasConcept C185592680 @default.
- W4321460256 hasConcept C19499675 @default.
- W4321460256 hasConcept C32230216 @default.
- W4321460256 hasConcept C33923547 @default.
- W4321460256 hasConcept C41008148 @default.
- W4321460256 hasConcept C55493867 @default.
- W4321460256 hasConcept C61326573 @default.
- W4321460256 hasConcept C62520636 @default.
- W4321460256 hasConcept C63479239 @default.
- W4321460256 hasConcept C81692654 @default.
- W4321460256 hasConcept C85617194 @default.
- W4321460256 hasConceptScore W4321460256C104317684 @default.
- W4321460256 hasConceptScore W4321460256C105795698 @default.
- W4321460256 hasConceptScore W4321460256C11413529 @default.