Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321481569> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4321481569 abstract "It has long been known that microphysics parameterizations are among leading sources of model uncertainty in storm and convective scale weather prediction.  The uncertainty results from combination of imperfect knowledge of the microphysics processes, inability to explicitly resolve them at computationally feasible spatial and phase-space resolutions, as well as from inherent limited predictability of micro to turbulent scale processes.   Representing these in the context of improving probabilistic prediction skill using ensembles has been the subject of many studies, but remains an outstanding problem.  The problem is especially acute in storm and convective scale ensemble prediction, where there may be strong coupling of errors between ensemble data assimilation and forecasting.  Over the last decade, the inclusion of stochastic representation of model uncertainty associated with physical parameterizations has emerged as a viable approach for representing the intrinsic uncertainties of the microphysical parameterizations.  This study examines sensitivity of storm scale ensemble simulations to representation of microphysics parameterization uncertainties using a cloud resolving model.  We compare several stochastic parameter (SP) perturbation methods, including various parameter distributions and parameter covariance models, applied to physical parameters in a bulk microphysics parameterization.  The study follows a prior study, in which a 1D column version of the 3D cloud resolving model was used to test non-stochastic and several SP perturbation methods for which the parameter perturbation statistical distributions were based on Markov Chain Monte Carlo (MCMC) inversions with synthetic observations. That study indicated that SP schemes produce significantly more ensemble variance of microphysics states than non-stochastic, and that inclusion of parameter covariances, and specifically those that vary with the state of the system, improve their performance. The current study investigates impacts of SP scheme configurations on microphysics with dynamical feedbacks in 3D ensemble simulations.  The statistical parameter distributions used for the SP scheme are obtained as in the 1D study using MCMC inversions with synthetic observations. The results are evaluated in terms of changes to the ensemble mean and variance of microphysical and dynamical states and the simulated column integral microphysics-sensitive satellite-based observable quantities. We discuss the results and note the implications for convective scale ensemble data assimilation and forecasting. " @default.
- W4321481569 created "2023-02-23" @default.
- W4321481569 creator A5000211149 @default.
- W4321481569 creator A5061953305 @default.
- W4321481569 creator A5076428235 @default.
- W4321481569 date "2023-05-15" @default.
- W4321481569 modified "2023-09-30" @default.
- W4321481569 title "Evaluation of stochastic parameter representation of microphysics parameterization uncertainty for convective scale ensemble data assimilation and prediction" @default.
- W4321481569 doi "https://doi.org/10.5194/egusphere-egu23-5714" @default.
- W4321481569 hasPublicationYear "2023" @default.
- W4321481569 type Work @default.
- W4321481569 citedByCount "0" @default.
- W4321481569 crossrefType "posted-content" @default.
- W4321481569 hasAuthorship W4321481569A5000211149 @default.
- W4321481569 hasAuthorship W4321481569A5061953305 @default.
- W4321481569 hasAuthorship W4321481569A5076428235 @default.
- W4321481569 hasConcept C105795698 @default.
- W4321481569 hasConcept C111350023 @default.
- W4321481569 hasConcept C119898033 @default.
- W4321481569 hasConcept C121332964 @default.
- W4321481569 hasConcept C121864883 @default.
- W4321481569 hasConcept C133204551 @default.
- W4321481569 hasConcept C147947694 @default.
- W4321481569 hasConcept C153294291 @default.
- W4321481569 hasConcept C177918212 @default.
- W4321481569 hasConcept C178650346 @default.
- W4321481569 hasConcept C19499675 @default.
- W4321481569 hasConcept C24552861 @default.
- W4321481569 hasConcept C33923547 @default.
- W4321481569 hasConcept C41008148 @default.
- W4321481569 hasConcept C62520636 @default.
- W4321481569 hasConceptScore W4321481569C105795698 @default.
- W4321481569 hasConceptScore W4321481569C111350023 @default.
- W4321481569 hasConceptScore W4321481569C119898033 @default.
- W4321481569 hasConceptScore W4321481569C121332964 @default.
- W4321481569 hasConceptScore W4321481569C121864883 @default.
- W4321481569 hasConceptScore W4321481569C133204551 @default.
- W4321481569 hasConceptScore W4321481569C147947694 @default.
- W4321481569 hasConceptScore W4321481569C153294291 @default.
- W4321481569 hasConceptScore W4321481569C177918212 @default.
- W4321481569 hasConceptScore W4321481569C178650346 @default.
- W4321481569 hasConceptScore W4321481569C19499675 @default.
- W4321481569 hasConceptScore W4321481569C24552861 @default.
- W4321481569 hasConceptScore W4321481569C33923547 @default.
- W4321481569 hasConceptScore W4321481569C41008148 @default.
- W4321481569 hasConceptScore W4321481569C62520636 @default.
- W4321481569 hasLocation W43214815691 @default.
- W4321481569 hasOpenAccess W4321481569 @default.
- W4321481569 hasPrimaryLocation W43214815691 @default.
- W4321481569 hasRelatedWork W1951881434 @default.
- W4321481569 hasRelatedWork W1966881429 @default.
- W4321481569 hasRelatedWork W1967215290 @default.
- W4321481569 hasRelatedWork W2016866892 @default.
- W4321481569 hasRelatedWork W2379258468 @default.
- W4321481569 hasRelatedWork W2886196490 @default.
- W4321481569 hasRelatedWork W2990894800 @default.
- W4321481569 hasRelatedWork W3015434310 @default.
- W4321481569 hasRelatedWork W3203288919 @default.
- W4321481569 hasRelatedWork W4236373379 @default.
- W4321481569 isParatext "false" @default.
- W4321481569 isRetracted "false" @default.
- W4321481569 workType "article" @default.