Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321484723> ?p ?o ?g. }
- W4321484723 endingPage "e45419" @default.
- W4321484723 startingPage "e45419" @default.
- W4321484723 abstract "Background For an emergent pandemic, such as COVID-19, the statistics of symptoms based on hospital data may be biased or delayed due to the high proportion of asymptomatic or mild-symptom infections that are not recorded in hospitals. Meanwhile, the difficulty in accessing large-scale clinical data also limits many researchers from conducting timely research. Objective Given the wide coverage and promptness of social media, this study aimed to present an efficient workflow to track and visualize the dynamic characteristics and co-occurrence of symptoms for the COVID-19 pandemic from large-scale and long-term social media data. Methods This retrospective study included 471,553,966 COVID-19–related tweets from February 1, 2020, to April 30, 2022. We curated a hierarchical symptom lexicon for social media containing 10 affected organs/systems, 257 symptoms, and 1808 synonyms. The dynamic characteristics of COVID-19 symptoms over time were analyzed from the perspectives of weekly new cases, overall distribution, and temporal prevalence of reported symptoms. The symptom evolutions between virus strains (Delta and Omicron) were investigated by comparing the symptom prevalence during their dominant periods. A co-occurrence symptom network was developed and visualized to investigate inner relationships among symptoms and affected body systems. Results This study identified 201 COVID-19 symptoms and grouped them into 10 affected body systems. There was a significant correlation between the weekly quantity of self-reported symptoms and new COVID-19 infections (Pearson correlation coefficient=0.8528; P<.001). We also observed a 1-week leading trend (Pearson correlation coefficient=0.8802; P<.001) between them. The frequency of symptoms showed dynamic changes as the pandemic progressed, from typical respiratory symptoms in the early stage to more musculoskeletal and nervous symptoms in the later stages. We identified the difference in symptoms between the Delta and Omicron periods. There were fewer severe symptoms (coma and dyspnea), more flu-like symptoms (throat pain and nasal congestion), and fewer typical COVID symptoms (anosmia and taste altered) in the Omicron period than in the Delta period (all P<.001). Network analysis revealed co-occurrences among symptoms and systems corresponding to specific disease progressions, including palpitations (cardiovascular) and dyspnea (respiratory), and alopecia (musculoskeletal) and impotence (reproductive). Conclusions This study identified more and milder COVID-19 symptoms than clinical research and characterized the dynamic symptom evolution based on 400 million tweets over 27 months. The symptom network revealed potential comorbidity risk and prognostic disease progression. These findings demonstrate that the cooperation of social media and a well-designed workflow can depict a holistic picture of pandemic symptoms to complement clinical studies." @default.
- W4321484723 created "2023-02-23" @default.
- W4321484723 creator A5009224620 @default.
- W4321484723 creator A5016290671 @default.
- W4321484723 creator A5032723793 @default.
- W4321484723 creator A5036110536 @default.
- W4321484723 creator A5051405817 @default.
- W4321484723 creator A5078108605 @default.
- W4321484723 creator A5081953757 @default.
- W4321484723 date "2023-03-14" @default.
- W4321484723 modified "2023-10-14" @default.
- W4321484723 title "Trend and Co-occurrence Network of COVID-19 Symptoms From Large-Scale Social Media Data: Infoveillance Study" @default.
- W4321484723 cites W1483357098 @default.
- W4321484723 cites W2028695285 @default.
- W4321484723 cites W2125910575 @default.
- W4321484723 cites W2562465529 @default.
- W4321484723 cites W2772817631 @default.
- W4321484723 cites W2952375801 @default.
- W4321484723 cites W2999823319 @default.
- W4321484723 cites W3007643904 @default.
- W4321484723 cites W3008028633 @default.
- W4321484723 cites W3008443627 @default.
- W4321484723 cites W3009912996 @default.
- W4321484723 cites W3010441732 @default.
- W4321484723 cites W3011483298 @default.
- W4321484723 cites W3015601245 @default.
- W4321484723 cites W3016127017 @default.
- W4321484723 cites W3017114883 @default.
- W4321484723 cites W3022734398 @default.
- W4321484723 cites W3023519397 @default.
- W4321484723 cites W3025534520 @default.
- W4321484723 cites W3025835236 @default.
- W4321484723 cites W3027426213 @default.
- W4321484723 cites W3033306974 @default.
- W4321484723 cites W3036301913 @default.
- W4321484723 cites W3040112133 @default.
- W4321484723 cites W3046281247 @default.
- W4321484723 cites W3047747926 @default.
- W4321484723 cites W3083130172 @default.
- W4321484723 cites W3086191894 @default.
- W4321484723 cites W3087156149 @default.
- W4321484723 cites W3087742714 @default.
- W4321484723 cites W3094221957 @default.
- W4321484723 cites W3094936259 @default.
- W4321484723 cites W3096451393 @default.
- W4321484723 cites W3099627660 @default.
- W4321484723 cites W3101739755 @default.
- W4321484723 cites W3103145424 @default.
- W4321484723 cites W3110062290 @default.
- W4321484723 cites W3121273931 @default.
- W4321484723 cites W3121430869 @default.
- W4321484723 cites W3128585438 @default.
- W4321484723 cites W3133517424 @default.
- W4321484723 cites W3139445795 @default.
- W4321484723 cites W3165568330 @default.
- W4321484723 cites W3173924159 @default.
- W4321484723 cites W3174635239 @default.
- W4321484723 cites W3175450024 @default.
- W4321484723 cites W3184154143 @default.
- W4321484723 cites W3184226105 @default.
- W4321484723 cites W3186314395 @default.
- W4321484723 cites W3191743264 @default.
- W4321484723 cites W3194466815 @default.
- W4321484723 cites W3198233589 @default.
- W4321484723 cites W3202850810 @default.
- W4321484723 cites W3208831612 @default.
- W4321484723 cites W3211908717 @default.
- W4321484723 cites W3212371437 @default.
- W4321484723 cites W4200044874 @default.
- W4321484723 cites W4205331651 @default.
- W4321484723 cites W4206979529 @default.
- W4321484723 cites W4207023170 @default.
- W4321484723 cites W4210242202 @default.
- W4321484723 cites W4210308999 @default.
- W4321484723 cites W4210511145 @default.
- W4321484723 cites W4213260552 @default.
- W4321484723 cites W4220790350 @default.
- W4321484723 cites W4224307505 @default.
- W4321484723 cites W4224943602 @default.
- W4321484723 cites W4225318455 @default.
- W4321484723 cites W4226342921 @default.
- W4321484723 cites W4229335055 @default.
- W4321484723 cites W4281784556 @default.
- W4321484723 cites W4283747295 @default.
- W4321484723 cites W4287510022 @default.
- W4321484723 cites W4301392846 @default.
- W4321484723 cites W4306728660 @default.
- W4321484723 doi "https://doi.org/10.2196/45419" @default.
- W4321484723 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36812402" @default.
- W4321484723 hasPublicationYear "2023" @default.
- W4321484723 type Work @default.
- W4321484723 citedByCount "0" @default.
- W4321484723 crossrefType "journal-article" @default.
- W4321484723 hasAuthorship W4321484723A5009224620 @default.
- W4321484723 hasAuthorship W4321484723A5016290671 @default.
- W4321484723 hasAuthorship W4321484723A5032723793 @default.
- W4321484723 hasAuthorship W4321484723A5036110536 @default.
- W4321484723 hasAuthorship W4321484723A5051405817 @default.