Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321488448> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4321488448 abstract "The overall enhancement of 5G and beyond (5GB) communication accelerates the rise of humongous devices/user equipment’s (UE’s) per-unit area. Massive MIMO (mMIMO) beamforming generates highly directed beams to serve massive UE’s in any area. In dense areas, generating closely distant beams require accurate localization of UEs. Ultra-accurate localization is demanded by implementing the directional beams since even a slight deviation in location leads to significant data loss. With such escalating device density and massive resource demands, the formation of multiple directional beams causes harmful radiation and colossal interference. To optimize beam allocation, a novel idea of mass-beamforming is introduced where a group of users with similar resource demands are served through a single beam. The centroid of massive UE’s in any indoor location is used to create a beam towards a user group. Also, it is essential to maintain users’ location and data privacy. Therefore, this paper proposes a privacy-preserving federated learning-based localization framework, FedBeam, for mass-beamforming in 5GB communication. FedBeam utilizes a deep learning model to acquire precise position location while preserving users’ data privacy. A localization-specific mass-beamforming dataset is modelled to evaluate the proposed framework. The simulation was conducted to validate the accuracy achieved by the proposed framework." @default.
- W4321488448 created "2023-02-23" @default.
- W4321488448 creator A5060515195 @default.
- W4321488448 creator A5076904268 @default.
- W4321488448 creator A5081065558 @default.
- W4321488448 date "2023-01-11" @default.
- W4321488448 modified "2023-09-30" @default.
- W4321488448 title "FedBeam: Federated learning based privacy preserved localization for mass-Beamforming in 5GB" @default.
- W4321488448 cites W2806729898 @default.
- W4321488448 cites W2907724980 @default.
- W4321488448 cites W2946902499 @default.
- W4321488448 cites W3004986376 @default.
- W4321488448 cites W3009722889 @default.
- W4321488448 cites W3016635190 @default.
- W4321488448 cites W3022862112 @default.
- W4321488448 cites W3043758338 @default.
- W4321488448 cites W3088076037 @default.
- W4321488448 cites W3097072081 @default.
- W4321488448 cites W3127447975 @default.
- W4321488448 cites W3164883109 @default.
- W4321488448 cites W3190002612 @default.
- W4321488448 cites W3198309204 @default.
- W4321488448 cites W3212568851 @default.
- W4321488448 doi "https://doi.org/10.1109/icoin56518.2023.10048980" @default.
- W4321488448 hasPublicationYear "2023" @default.
- W4321488448 type Work @default.
- W4321488448 citedByCount "0" @default.
- W4321488448 crossrefType "proceedings-article" @default.
- W4321488448 hasAuthorship W4321488448A5060515195 @default.
- W4321488448 hasAuthorship W4321488448A5076904268 @default.
- W4321488448 hasAuthorship W4321488448A5081065558 @default.
- W4321488448 hasConcept C127162648 @default.
- W4321488448 hasConcept C146599234 @default.
- W4321488448 hasConcept C154945302 @default.
- W4321488448 hasConcept C206345919 @default.
- W4321488448 hasConcept C2781327853 @default.
- W4321488448 hasConcept C31258907 @default.
- W4321488448 hasConcept C32022120 @default.
- W4321488448 hasConcept C41008148 @default.
- W4321488448 hasConcept C54197355 @default.
- W4321488448 hasConcept C68649174 @default.
- W4321488448 hasConcept C76155785 @default.
- W4321488448 hasConcept C79403827 @default.
- W4321488448 hasConceptScore W4321488448C127162648 @default.
- W4321488448 hasConceptScore W4321488448C146599234 @default.
- W4321488448 hasConceptScore W4321488448C154945302 @default.
- W4321488448 hasConceptScore W4321488448C206345919 @default.
- W4321488448 hasConceptScore W4321488448C2781327853 @default.
- W4321488448 hasConceptScore W4321488448C31258907 @default.
- W4321488448 hasConceptScore W4321488448C32022120 @default.
- W4321488448 hasConceptScore W4321488448C41008148 @default.
- W4321488448 hasConceptScore W4321488448C54197355 @default.
- W4321488448 hasConceptScore W4321488448C68649174 @default.
- W4321488448 hasConceptScore W4321488448C76155785 @default.
- W4321488448 hasConceptScore W4321488448C79403827 @default.
- W4321488448 hasLocation W43214884481 @default.
- W4321488448 hasOpenAccess W4321488448 @default.
- W4321488448 hasPrimaryLocation W43214884481 @default.
- W4321488448 hasRelatedWork W1825230447 @default.
- W4321488448 hasRelatedWork W1971958342 @default.
- W4321488448 hasRelatedWork W1988496553 @default.
- W4321488448 hasRelatedWork W2159381117 @default.
- W4321488448 hasRelatedWork W2347249388 @default.
- W4321488448 hasRelatedWork W2393290585 @default.
- W4321488448 hasRelatedWork W2778151824 @default.
- W4321488448 hasRelatedWork W2949356284 @default.
- W4321488448 hasRelatedWork W4293057428 @default.
- W4321488448 hasRelatedWork W2289847726 @default.
- W4321488448 isParatext "false" @default.
- W4321488448 isRetracted "false" @default.
- W4321488448 workType "article" @default.