Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321497457> ?p ?o ?g. }
- W4321497457 endingPage "48" @default.
- W4321497457 startingPage "35" @default.
- W4321497457 abstract "Abstract Objective Aging is a complicated process that triggers age‐related disease susceptibility through intercellular communication in the microenvironment. While the classic secretome of senescence‐associated secretory phenotype (SASP) including soluble factors, growth factors, and extracellular matrix remodeling enzymes are known to impact tissue homeostasis during the aging process, the effects of novel SASP components, extracellular small noncoding RNAs (sncRNAs), on human aging are not well established. Methods Here, by utilizing 446 small RNA‐seq samples from plasma and serum of healthy donors found in the Extracellular RNA (exRNA) Atlas data repository, we correlated linear and nonlinear features between circulating sncRNAs expression and age by the maximal information coefficient (MIC) relationship determination. Age predictors were generated by ensemble machine learning methods (Adaptive Boosting, Gradient Boosting, and Random Forest) and core age‐related sncRNAs were determined through weighted coefficients in machine learning models. Functional investigation was performed via target prediction of age‐related miRNAs. Results We observed the number of highly expressed transfer RNAs (tRNAs) and microRNAs (miRNAs) showed positive and negative associations with age respectively. Two‐variable (sncRNA expression and individual age) relationships were detected by MIC and sncRNAs‐based age predictors were established, resulting in a forecast performance where all R 2 values were greater than 0.96 and root‐mean‐square errors (RMSE) were less than 3.7 years in three ensemble machine learning methods. Furthermore, important age‐related sncRNAs were identified based on modeling and the biological pathways of age‐related miRNAs were characterized by their predicted targets, including multiple pathways in intercellular communication, cancer and immune regulation. Conclusion In summary, this study provides valuable insights into circulating sncRNAs expression dynamics during human aging and may lead to advanced understanding of age‐related sncRNAs functions with further elucidation." @default.
- W4321497457 created "2023-02-23" @default.
- W4321497457 creator A5003491617 @default.
- W4321497457 creator A5014950784 @default.
- W4321497457 creator A5027562279 @default.
- W4321497457 creator A5072625411 @default.
- W4321497457 date "2023-02-22" @default.
- W4321497457 modified "2023-09-30" @default.
- W4321497457 title "Characteristics of circulating small noncoding <scp>RNAs</scp> in plasma and serum during human aging" @default.
- W4321497457 cites W1966205099 @default.
- W4321497457 cites W1972898510 @default.
- W4321497457 cites W1999303581 @default.
- W4321497457 cites W1999788892 @default.
- W4321497457 cites W2055639102 @default.
- W4321497457 cites W2063229775 @default.
- W4321497457 cites W2070050178 @default.
- W4321497457 cites W2105726520 @default.
- W4321497457 cites W2114104545 @default.
- W4321497457 cites W2115852450 @default.
- W4321497457 cites W2120126501 @default.
- W4321497457 cites W2128799582 @default.
- W4321497457 cites W2137081126 @default.
- W4321497457 cites W2143044967 @default.
- W4321497457 cites W2146445828 @default.
- W4321497457 cites W2155396750 @default.
- W4321497457 cites W2165700458 @default.
- W4321497457 cites W2169353806 @default.
- W4321497457 cites W2170551349 @default.
- W4321497457 cites W2170809878 @default.
- W4321497457 cites W2571444004 @default.
- W4321497457 cites W2613244654 @default.
- W4321497457 cites W2738173133 @default.
- W4321497457 cites W2750509325 @default.
- W4321497457 cites W2765546416 @default.
- W4321497457 cites W2766766387 @default.
- W4321497457 cites W2767517408 @default.
- W4321497457 cites W2779113993 @default.
- W4321497457 cites W2786514708 @default.
- W4321497457 cites W2793056024 @default.
- W4321497457 cites W2803712955 @default.
- W4321497457 cites W2804970146 @default.
- W4321497457 cites W2805360216 @default.
- W4321497457 cites W2809499620 @default.
- W4321497457 cites W2888576209 @default.
- W4321497457 cites W2897690672 @default.
- W4321497457 cites W2905232298 @default.
- W4321497457 cites W2911266829 @default.
- W4321497457 cites W2911369810 @default.
- W4321497457 cites W2911788560 @default.
- W4321497457 cites W2912654909 @default.
- W4321497457 cites W2931164250 @default.
- W4321497457 cites W2950766853 @default.
- W4321497457 cites W2971121994 @default.
- W4321497457 cites W2974646711 @default.
- W4321497457 cites W2977327483 @default.
- W4321497457 cites W2989050631 @default.
- W4321497457 cites W2991201071 @default.
- W4321497457 cites W3002798034 @default.
- W4321497457 cites W3009798145 @default.
- W4321497457 cites W3015295307 @default.
- W4321497457 cites W3017299963 @default.
- W4321497457 cites W3023862871 @default.
- W4321497457 cites W3032919728 @default.
- W4321497457 cites W3033805041 @default.
- W4321497457 cites W3048259230 @default.
- W4321497457 cites W3114302742 @default.
- W4321497457 cites W3131055609 @default.
- W4321497457 cites W3132302653 @default.
- W4321497457 cites W3144880643 @default.
- W4321497457 cites W3145969289 @default.
- W4321497457 cites W3160139315 @default.
- W4321497457 cites W3164093788 @default.
- W4321497457 cites W3195865705 @default.
- W4321497457 cites W3196457918 @default.
- W4321497457 cites W3209164760 @default.
- W4321497457 cites W3215763937 @default.
- W4321497457 cites W4224299791 @default.
- W4321497457 cites W4289521449 @default.
- W4321497457 doi "https://doi.org/10.1002/agm2.12241" @default.
- W4321497457 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36911092" @default.
- W4321497457 hasPublicationYear "2023" @default.
- W4321497457 type Work @default.
- W4321497457 citedByCount "0" @default.
- W4321497457 crossrefType "journal-article" @default.
- W4321497457 hasAuthorship W4321497457A5003491617 @default.
- W4321497457 hasAuthorship W4321497457A5014950784 @default.
- W4321497457 hasAuthorship W4321497457A5027562279 @default.
- W4321497457 hasAuthorship W4321497457A5072625411 @default.
- W4321497457 hasBestOaLocation W43214974571 @default.
- W4321497457 hasConcept C104317684 @default.
- W4321497457 hasConcept C145059251 @default.
- W4321497457 hasConcept C28406088 @default.
- W4321497457 hasConcept C500499127 @default.
- W4321497457 hasConcept C522857546 @default.
- W4321497457 hasConcept C54355233 @default.
- W4321497457 hasConcept C86803240 @default.
- W4321497457 hasConceptScore W4321497457C104317684 @default.
- W4321497457 hasConceptScore W4321497457C145059251 @default.