Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321497771> ?p ?o ?g. }
- W4321497771 endingPage "2402" @default.
- W4321497771 startingPage "2402" @default.
- W4321497771 abstract "Condition-Based Maintenance (CBM), based on sensors, can only be reliable if the data used to extract information are also reliable. Industrial metrology plays a major role in ensuring the quality of the data collected by the sensors. To guarantee that the values collected by the sensors are reliable, it is necessary to have metrological traceability made by successive calibrations from higher standards to the sensors used in the factories. To ensure the reliability of the data, a calibration strategy must be put in place. Usually, sensors are only calibrated on a periodic basis; so, they often go for calibration without it being necessary or collect data inaccurately. In addition, the sensors are checked often, increasing the need for manpower, and sensor errors are frequently overlooked when the redundant sensor has a drift in the same direction. It is necessary to acquire a calibration strategy based on the sensor condition. Through online monitoring of sensor calibration status (OLM), it is possible to perform calibrations only when it is really necessary. To reach this end, this paper aims to provide a strategy to classify the health status of the production equipment and of the reading equipment that uses the same dataset. A measurement signal from four sensors was simulated, for which Artificial Intelligence and Machine Learning with unsupervised algorithms were used. This paper demonstrates how, through the same dataset, it is possible to obtain distinct information. Because of this, we have a very important feature creation process, followed by Principal Component Analysis (PCA), K-means clustering, and classification based on Hidden Markov Models (HMM). Through three hidden states of the HMM, which represent the health states of the production equipment, we will first detect, through correlations, the features of its status. After that, an HMM filter is used to eliminate those errors from the original signal. Next, an equal methodology is conducted for each sensor individually and using statistical features in the time domain where we can obtain, through HMM, the failures of each sensor." @default.
- W4321497771 created "2023-02-23" @default.
- W4321497771 creator A5012249778 @default.
- W4321497771 creator A5014231364 @default.
- W4321497771 creator A5033782460 @default.
- W4321497771 creator A5038147130 @default.
- W4321497771 creator A5053141598 @default.
- W4321497771 date "2023-02-21" @default.
- W4321497771 modified "2023-09-30" @default.
- W4321497771 title "Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance" @default.
- W4321497771 cites W189951555 @default.
- W4321497771 cites W1966122025 @default.
- W4321497771 cites W1985514943 @default.
- W4321497771 cites W2002091413 @default.
- W4321497771 cites W2046809082 @default.
- W4321497771 cites W2046857808 @default.
- W4321497771 cites W2105594594 @default.
- W4321497771 cites W2125838338 @default.
- W4321497771 cites W2401916531 @default.
- W4321497771 cites W2588832406 @default.
- W4321497771 cites W2614097522 @default.
- W4321497771 cites W2799599955 @default.
- W4321497771 cites W2807000556 @default.
- W4321497771 cites W2899049377 @default.
- W4321497771 cites W2943927340 @default.
- W4321497771 cites W2967638534 @default.
- W4321497771 cites W2974503768 @default.
- W4321497771 cites W2992933757 @default.
- W4321497771 cites W2996350858 @default.
- W4321497771 cites W3000554416 @default.
- W4321497771 cites W3036353218 @default.
- W4321497771 cites W3080491161 @default.
- W4321497771 cites W3082572049 @default.
- W4321497771 cites W3088133960 @default.
- W4321497771 cites W3106861319 @default.
- W4321497771 cites W3120157483 @default.
- W4321497771 cites W3129694178 @default.
- W4321497771 cites W3138990843 @default.
- W4321497771 cites W3155049708 @default.
- W4321497771 cites W3156052521 @default.
- W4321497771 cites W3164810817 @default.
- W4321497771 cites W3167189836 @default.
- W4321497771 cites W3177503640 @default.
- W4321497771 cites W3193285647 @default.
- W4321497771 cites W3195303268 @default.
- W4321497771 cites W3199679542 @default.
- W4321497771 cites W3202533583 @default.
- W4321497771 cites W3204659066 @default.
- W4321497771 cites W3211281790 @default.
- W4321497771 cites W3212280553 @default.
- W4321497771 cites W3215102084 @default.
- W4321497771 cites W3217746002 @default.
- W4321497771 cites W4200085504 @default.
- W4321497771 cites W4200245817 @default.
- W4321497771 cites W4212955702 @default.
- W4321497771 cites W4213219445 @default.
- W4321497771 cites W4213418104 @default.
- W4321497771 cites W4214484890 @default.
- W4321497771 cites W4220656901 @default.
- W4321497771 cites W4220723811 @default.
- W4321497771 cites W4220840109 @default.
- W4321497771 cites W4220896442 @default.
- W4321497771 cites W4221087820 @default.
- W4321497771 cites W4224243654 @default.
- W4321497771 cites W4226060353 @default.
- W4321497771 cites W4242256920 @default.
- W4321497771 cites W4242581272 @default.
- W4321497771 cites W4256520842 @default.
- W4321497771 cites W4293070882 @default.
- W4321497771 cites W4294811472 @default.
- W4321497771 cites W4312127163 @default.
- W4321497771 doi "https://doi.org/10.3390/s23052402" @default.
- W4321497771 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36904607" @default.
- W4321497771 hasPublicationYear "2023" @default.
- W4321497771 type Work @default.
- W4321497771 citedByCount "5" @default.
- W4321497771 countsByYear W43214977712023 @default.
- W4321497771 crossrefType "journal-article" @default.
- W4321497771 hasAuthorship W4321497771A5012249778 @default.
- W4321497771 hasAuthorship W4321497771A5014231364 @default.
- W4321497771 hasAuthorship W4321497771A5033782460 @default.
- W4321497771 hasAuthorship W4321497771A5038147130 @default.
- W4321497771 hasAuthorship W4321497771A5053141598 @default.
- W4321497771 hasBestOaLocation W43214977711 @default.
- W4321497771 hasConcept C105795698 @default.
- W4321497771 hasConcept C111919701 @default.
- W4321497771 hasConcept C115903868 @default.
- W4321497771 hasConcept C119857082 @default.
- W4321497771 hasConcept C121332964 @default.
- W4321497771 hasConcept C124101348 @default.
- W4321497771 hasConcept C127413603 @default.
- W4321497771 hasConcept C138885662 @default.
- W4321497771 hasConcept C153876917 @default.
- W4321497771 hasConcept C154945302 @default.
- W4321497771 hasConcept C163258240 @default.
- W4321497771 hasConcept C165838908 @default.
- W4321497771 hasConcept C195766429 @default.
- W4321497771 hasConcept C200601418 @default.