Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321497788> ?p ?o ?g. }
- W4321497788 endingPage "2377" @default.
- W4321497788 startingPage "2377" @default.
- W4321497788 abstract "The reconstruction of realistic large-scale 3D scene models using aerial images or videos has significant applications in smart cities, surveying and mapping, the military and other fields. In the current state-of-the-art 3D-reconstruction pipeline, the massive scale of the scene and the enormous amount of input data are still considerable obstacles to the rapid reconstruction of large-scale 3D scene models. In this paper, we develop a professional system for large-scale 3D reconstruction. First, in the sparse point-cloud reconstruction stage, the computed matching relationships are used as the initial camera graph and divided into multiple subgraphs by a clustering algorithm. Multiple computational nodes execute the local structure-from-motion (SFM) technique, and local cameras are registered. Global camera alignment is achieved by integrating and optimizing all local camera poses. Second, in the dense point-cloud reconstruction stage, the adjacency information is decoupled from the pixel level by red-and-black checkerboard grid sampling. The optimal depth value is obtained using normalized cross-correlation (NCC). Additionally, during the mesh-reconstruction stage, feature-preserving mesh simplification, Laplace mesh-smoothing and mesh-detail-recovery methods are used to improve the quality of the mesh model. Finally, the above algorithms are integrated into our large-scale 3D-reconstruction system. Experiments show that the system can effectively improve the reconstruction speed of large-scale 3D scenes." @default.
- W4321497788 created "2023-02-23" @default.
- W4321497788 creator A5000669556 @default.
- W4321497788 creator A5013038112 @default.
- W4321497788 creator A5013794056 @default.
- W4321497788 creator A5085055482 @default.
- W4321497788 date "2023-02-21" @default.
- W4321497788 modified "2023-09-26" @default.
- W4321497788 title "A Cluster-Based 3D Reconstruction System for Large-Scale Scenes" @default.
- W4321497788 cites W1484371059 @default.
- W4321497788 cites W1499715726 @default.
- W4321497788 cites W1536617987 @default.
- W4321497788 cites W1592908867 @default.
- W4321497788 cites W1955069752 @default.
- W4321497788 cites W1958116060 @default.
- W4321497788 cites W1963715532 @default.
- W4321497788 cites W2001790138 @default.
- W4321497788 cites W2006816478 @default.
- W4321497788 cites W2007806707 @default.
- W4321497788 cites W2011551841 @default.
- W4321497788 cites W2013472030 @default.
- W4321497788 cites W2025022323 @default.
- W4321497788 cites W2033893696 @default.
- W4321497788 cites W2058524213 @default.
- W4321497788 cites W2069293739 @default.
- W4321497788 cites W2071616405 @default.
- W4321497788 cites W2096651146 @default.
- W4321497788 cites W2099443716 @default.
- W4321497788 cites W2105303354 @default.
- W4321497788 cites W2111240761 @default.
- W4321497788 cites W2121947440 @default.
- W4321497788 cites W2124313187 @default.
- W4321497788 cites W2129404737 @default.
- W4321497788 cites W2142702104 @default.
- W4321497788 cites W2143116602 @default.
- W4321497788 cites W2152770403 @default.
- W4321497788 cites W2155056756 @default.
- W4321497788 cites W2156116778 @default.
- W4321497788 cites W2163309730 @default.
- W4321497788 cites W2163446794 @default.
- W4321497788 cites W2171056981 @default.
- W4321497788 cites W2171244244 @default.
- W4321497788 cites W2171542563 @default.
- W4321497788 cites W2199898507 @default.
- W4321497788 cites W2217143704 @default.
- W4321497788 cites W2338968644 @default.
- W4321497788 cites W2461079165 @default.
- W4321497788 cites W2471962767 @default.
- W4321497788 cites W2519683295 @default.
- W4321497788 cites W2550079483 @default.
- W4321497788 cites W2592811474 @default.
- W4321497788 cites W2604901014 @default.
- W4321497788 cites W2753893487 @default.
- W4321497788 cites W2798548676 @default.
- W4321497788 cites W2962793285 @default.
- W4321497788 cites W2963221299 @default.
- W4321497788 cites W2963707067 @default.
- W4321497788 cites W2964158430 @default.
- W4321497788 cites W2967693513 @default.
- W4321497788 cites W2982336381 @default.
- W4321497788 cites W2986217866 @default.
- W4321497788 cites W2999260518 @default.
- W4321497788 cites W3034524082 @default.
- W4321497788 cites W3035483468 @default.
- W4321497788 cites W309515887 @default.
- W4321497788 cites W3159272845 @default.
- W4321497788 cites W3159981575 @default.
- W4321497788 cites W3170262190 @default.
- W4321497788 cites W3195763721 @default.
- W4321497788 cites W4206760982 @default.
- W4321497788 cites W4248598408 @default.
- W4321497788 cites W4292387186 @default.
- W4321497788 doi "https://doi.org/10.3390/s23052377" @default.
- W4321497788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36904582" @default.
- W4321497788 hasPublicationYear "2023" @default.
- W4321497788 type Work @default.
- W4321497788 citedByCount "0" @default.
- W4321497788 crossrefType "journal-article" @default.
- W4321497788 hasAuthorship W4321497788A5000669556 @default.
- W4321497788 hasAuthorship W4321497788A5013038112 @default.
- W4321497788 hasAuthorship W4321497788A5013794056 @default.
- W4321497788 hasAuthorship W4321497788A5085055482 @default.
- W4321497788 hasBestOaLocation W43214977881 @default.
- W4321497788 hasConcept C10161872 @default.
- W4321497788 hasConcept C109950114 @default.
- W4321497788 hasConcept C131979681 @default.
- W4321497788 hasConcept C141379421 @default.
- W4321497788 hasConcept C146159030 @default.
- W4321497788 hasConcept C154945302 @default.
- W4321497788 hasConcept C205649164 @default.
- W4321497788 hasConcept C2778755073 @default.
- W4321497788 hasConcept C2779898584 @default.
- W4321497788 hasConcept C31972630 @default.
- W4321497788 hasConcept C41008148 @default.
- W4321497788 hasConcept C58640448 @default.
- W4321497788 hasConcept C73555534 @default.
- W4321497788 hasConceptScore W4321497788C10161872 @default.
- W4321497788 hasConceptScore W4321497788C109950114 @default.