Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321498598> ?p ?o ?g. }
- W4321498598 endingPage "1171" @default.
- W4321498598 startingPage "1171" @default.
- W4321498598 abstract "The impact crater detection offers a great scientific contribution in analyzing the geological processes, morphologies and physical properties of the celestial bodies and plays a crucial role in potential future landing sites. The huge amount of craters requires automated detection algorithms, and considering the low spatial resolution provided by the satellite jointly with, the solar illuminance/incidence variety, these methods lack their performance in the recognition tasks. Furthermore, small craters are harder to recognize also by human experts and the need to have a sophisticated detection algorithm becomes mandatory. To address these problems, we propose a deep learning architecture refers as “YOLOLens5x”, for impact crater detection based on super-resolution in a unique end-to-end design. We introduce the entire workflow useful to link the Robbins Lunar catalogue with the tiles orthoprojected from the Lunar mosaic LROC mission in order to train our proposed model as a supervised paradigm and, the various optimization due to provide a clear dataset in the training step. We prove by experimental results a boost in terms of precision and recall than the other state-of-the-art crater detection models, reporting the lowest error estimated craters diameter using the same scale factor given by LROC WAC Camera. To simulate the camera satellite at the lowest spatial resolution, we carried out experiments at different scale factors (200 m/px, 400 m/px) by interpolating the source image of 100 m/px, bringing to light remarkable results across all metrics under consideration compared with the baseline used." @default.
- W4321498598 created "2023-02-23" @default.
- W4321498598 creator A5005965051 @default.
- W4321498598 creator A5009383701 @default.
- W4321498598 creator A5018963677 @default.
- W4321498598 creator A5042977409 @default.
- W4321498598 creator A5054778549 @default.
- W4321498598 date "2023-02-21" @default.
- W4321498598 modified "2023-09-30" @default.
- W4321498598 title "YOLOLens: A Deep Learning Model Based on Super-Resolution to Enhance the Crater Detection of the Planetary Surfaces" @default.
- W4321498598 cites W1100968874 @default.
- W4321498598 cites W1969819425 @default.
- W4321498598 cites W1972087943 @default.
- W4321498598 cites W1972679644 @default.
- W4321498598 cites W1975036118 @default.
- W4321498598 cites W1979818814 @default.
- W4321498598 cites W2022888544 @default.
- W4321498598 cites W2024388671 @default.
- W4321498598 cites W2024972547 @default.
- W4321498598 cites W2042308317 @default.
- W4321498598 cites W2058273480 @default.
- W4321498598 cites W2065782610 @default.
- W4321498598 cites W2066776771 @default.
- W4321498598 cites W2069833494 @default.
- W4321498598 cites W2070651968 @default.
- W4321498598 cites W2081137192 @default.
- W4321498598 cites W2084786674 @default.
- W4321498598 cites W2086490004 @default.
- W4321498598 cites W2097178192 @default.
- W4321498598 cites W2106411285 @default.
- W4321498598 cites W2117586409 @default.
- W4321498598 cites W2127592841 @default.
- W4321498598 cites W2139034491 @default.
- W4321498598 cites W2145892001 @default.
- W4321498598 cites W2148848671 @default.
- W4321498598 cites W2151103935 @default.
- W4321498598 cites W2161969291 @default.
- W4321498598 cites W2317096258 @default.
- W4321498598 cites W2565639579 @default.
- W4321498598 cites W2613238226 @default.
- W4321498598 cites W2620121130 @default.
- W4321498598 cites W2739874990 @default.
- W4321498598 cites W2757606070 @default.
- W4321498598 cites W2783481644 @default.
- W4321498598 cites W2790438496 @default.
- W4321498598 cites W2792008101 @default.
- W4321498598 cites W2792403456 @default.
- W4321498598 cites W2806198699 @default.
- W4321498598 cites W2893801697 @default.
- W4321498598 cites W2899763405 @default.
- W4321498598 cites W2903185461 @default.
- W4321498598 cites W2936628966 @default.
- W4321498598 cites W2963037989 @default.
- W4321498598 cites W2963351448 @default.
- W4321498598 cites W2963419596 @default.
- W4321498598 cites W2963606888 @default.
- W4321498598 cites W2963857746 @default.
- W4321498598 cites W2964101377 @default.
- W4321498598 cites W2964241181 @default.
- W4321498598 cites W2970759983 @default.
- W4321498598 cites W2982770724 @default.
- W4321498598 cites W2986357608 @default.
- W4321498598 cites W3008411065 @default.
- W4321498598 cites W3022805585 @default.
- W4321498598 cites W3043853591 @default.
- W4321498598 cites W3080509309 @default.
- W4321498598 cites W3092014283 @default.
- W4321498598 cites W3093639989 @default.
- W4321498598 cites W3102701618 @default.
- W4321498598 cites W3105475593 @default.
- W4321498598 cites W3106250896 @default.
- W4321498598 cites W3113927154 @default.
- W4321498598 cites W3134598673 @default.
- W4321498598 cites W3163535405 @default.
- W4321498598 cites W3183061667 @default.
- W4321498598 cites W3189288180 @default.
- W4321498598 cites W4210575474 @default.
- W4321498598 cites W4281386613 @default.
- W4321498598 cites W4288717307 @default.
- W4321498598 cites W4296280956 @default.
- W4321498598 cites W4307206400 @default.
- W4321498598 doi "https://doi.org/10.3390/rs15051171" @default.
- W4321498598 hasPublicationYear "2023" @default.
- W4321498598 type Work @default.
- W4321498598 citedByCount "0" @default.
- W4321498598 crossrefType "journal-article" @default.
- W4321498598 hasAuthorship W4321498598A5005965051 @default.
- W4321498598 hasAuthorship W4321498598A5009383701 @default.
- W4321498598 hasAuthorship W4321498598A5018963677 @default.
- W4321498598 hasAuthorship W4321498598A5042977409 @default.
- W4321498598 hasAuthorship W4321498598A5054778549 @default.
- W4321498598 hasBestOaLocation W43214985981 @default.
- W4321498598 hasConcept C108583219 @default.
- W4321498598 hasConcept C121332964 @default.
- W4321498598 hasConcept C127313418 @default.
- W4321498598 hasConcept C127413603 @default.
- W4321498598 hasConcept C146978453 @default.
- W4321498598 hasConcept C154945302 @default.