Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321499019> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4321499019 abstract "Abstract With the onset of pandemics and accrescent stress among people, heart disease has become one of the leading contributors to premature deaths worldwide. Early prognosis of this disorder is the most viable strategy for increasing the prospects of individuals' survival. Numerous methods exploiting machine learning algorithms for heart disease prediction have been reported in the literature, but they all suffer from overfitting problems. Conspicuously, to improve the prediction accuracy, in this research work, an efficient meta‐heuristic‐based feature selection technique, namely NSGA‐II, is employed. The proposed solution aims to reduce the feature set and thus improve the prediction accuracy supported by intelligent machine learning models. The presented classifier is trained and validated using a comprehensive heart disease dataset by utilizing NSGA‐II selected features with 10‐fold cross‐validation. For performance validation, the results of the proposed model are compared with the state‐of‐the‐art machine learning algorithms, such as a k‐nearest neighbour, support vector machine, Bayesian belief networks, random forest, and naive bayes. The simulation results highlight the improved performance of the proposed model with NSGA‐II and achieve a high prediction accuracy of 97.32%. Furthermore, results of sensitivity (92.84%), specificity (92.60%), precision (91.25%), and F ‐measure (92.17%) prove the utility of the proposed approach for heart disease prediction over all other variants." @default.
- W4321499019 created "2023-02-23" @default.
- W4321499019 creator A5001742940 @default.
- W4321499019 creator A5049862622 @default.
- W4321499019 date "2023-02-21" @default.
- W4321499019 modified "2023-09-26" @default.
- W4321499019 title "<scp>EDL‐NSGA‐II</scp>: Ensemble deep learning framework with <scp>NSGA‐II</scp> feature selection for heart disease prediction" @default.
- W4321499019 cites W1528741131 @default.
- W4321499019 cites W2167159964 @default.
- W4321499019 cites W2492804124 @default.
- W4321499019 cites W2521029800 @default.
- W4321499019 cites W2784178186 @default.
- W4321499019 cites W2797648991 @default.
- W4321499019 cites W2903099708 @default.
- W4321499019 cites W2920805549 @default.
- W4321499019 cites W2949767632 @default.
- W4321499019 cites W2978273980 @default.
- W4321499019 cites W3009168004 @default.
- W4321499019 cites W3021925134 @default.
- W4321499019 cites W3038010422 @default.
- W4321499019 cites W3099560096 @default.
- W4321499019 cites W3120658414 @default.
- W4321499019 cites W3121216533 @default.
- W4321499019 cites W3126049359 @default.
- W4321499019 cites W3135190575 @default.
- W4321499019 cites W3135387830 @default.
- W4321499019 cites W3136882821 @default.
- W4321499019 cites W3159624482 @default.
- W4321499019 cites W3188955387 @default.
- W4321499019 cites W3194175849 @default.
- W4321499019 cites W3195194899 @default.
- W4321499019 cites W3202169414 @default.
- W4321499019 cites W3204506653 @default.
- W4321499019 cites W3208510759 @default.
- W4321499019 cites W3210707720 @default.
- W4321499019 cites W4205183033 @default.
- W4321499019 cites W4205231442 @default.
- W4321499019 cites W4205682485 @default.
- W4321499019 cites W4206154777 @default.
- W4321499019 cites W4221059823 @default.
- W4321499019 cites W4283274236 @default.
- W4321499019 doi "https://doi.org/10.1111/exsy.13254" @default.
- W4321499019 hasPublicationYear "2023" @default.
- W4321499019 type Work @default.
- W4321499019 citedByCount "1" @default.
- W4321499019 countsByYear W43214990192023 @default.
- W4321499019 crossrefType "journal-article" @default.
- W4321499019 hasAuthorship W4321499019A5001742940 @default.
- W4321499019 hasAuthorship W4321499019A5049862622 @default.
- W4321499019 hasConcept C119857082 @default.
- W4321499019 hasConcept C12267149 @default.
- W4321499019 hasConcept C138885662 @default.
- W4321499019 hasConcept C148483581 @default.
- W4321499019 hasConcept C154945302 @default.
- W4321499019 hasConcept C169258074 @default.
- W4321499019 hasConcept C22019652 @default.
- W4321499019 hasConcept C27181475 @default.
- W4321499019 hasConcept C2776401178 @default.
- W4321499019 hasConcept C33724603 @default.
- W4321499019 hasConcept C41008148 @default.
- W4321499019 hasConcept C41895202 @default.
- W4321499019 hasConcept C45942800 @default.
- W4321499019 hasConcept C50644808 @default.
- W4321499019 hasConcept C52001869 @default.
- W4321499019 hasConcept C95623464 @default.
- W4321499019 hasConceptScore W4321499019C119857082 @default.
- W4321499019 hasConceptScore W4321499019C12267149 @default.
- W4321499019 hasConceptScore W4321499019C138885662 @default.
- W4321499019 hasConceptScore W4321499019C148483581 @default.
- W4321499019 hasConceptScore W4321499019C154945302 @default.
- W4321499019 hasConceptScore W4321499019C169258074 @default.
- W4321499019 hasConceptScore W4321499019C22019652 @default.
- W4321499019 hasConceptScore W4321499019C27181475 @default.
- W4321499019 hasConceptScore W4321499019C2776401178 @default.
- W4321499019 hasConceptScore W4321499019C33724603 @default.
- W4321499019 hasConceptScore W4321499019C41008148 @default.
- W4321499019 hasConceptScore W4321499019C41895202 @default.
- W4321499019 hasConceptScore W4321499019C45942800 @default.
- W4321499019 hasConceptScore W4321499019C50644808 @default.
- W4321499019 hasConceptScore W4321499019C52001869 @default.
- W4321499019 hasConceptScore W4321499019C95623464 @default.
- W4321499019 hasIssue "7" @default.
- W4321499019 hasLocation W43214990191 @default.
- W4321499019 hasOpenAccess W4321499019 @default.
- W4321499019 hasPrimaryLocation W43214990191 @default.
- W4321499019 hasRelatedWork W2985924212 @default.
- W4321499019 hasRelatedWork W3183325042 @default.
- W4321499019 hasRelatedWork W4213444042 @default.
- W4321499019 hasRelatedWork W4223539146 @default.
- W4321499019 hasRelatedWork W4285343791 @default.
- W4321499019 hasRelatedWork W4321499019 @default.
- W4321499019 hasRelatedWork W4362588981 @default.
- W4321499019 hasRelatedWork W4366374059 @default.
- W4321499019 hasRelatedWork W4375930479 @default.
- W4321499019 hasRelatedWork W4386214552 @default.
- W4321499019 hasVolume "40" @default.
- W4321499019 isParatext "false" @default.
- W4321499019 isRetracted "false" @default.
- W4321499019 workType "article" @default.