Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321501376> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4321501376 abstract "Training datasets are a crucial component of any machine learning approach, with significant human effort spent creating and curating these for specific applications. However, a historical absence of standards has resulted in inconsistent and heterogeneous training datasets with limited discoverability and interoperability. Therefore, there is a need for best practices and guidelines for generating, structuring, describing, and curating training datasets.The Open Geospatial Consortium (OGC) Testbed-18 initiative covered several topics related to geospatial data, focussing on issues around cataloguing and interoperability. Within Testbed-18, the Machine Learning Training Datasets task aimed to develop a foundation for future standardization of training datasets for Earth observation applications.For this task, members from Pixalytics, FrontierSI, and Curtin University authored an Engineering Report that reviewed:·       Examples of how training datasets have been used in Earth observation applications·       The current best-practice methods for documenting training datasets·       The various requirements for training dataset metadata·       How the Findability, Accessibility, Interoperability, and Reuse (FAIR) principles apply to training datasetsThe Engineering Report provides a foundation that OGC can leverage in creating the future standard for machine learning training data for Earth observation applications. The Engineering Report also provides a useful overview of the state of work and key considerations for anyone wishing to improve how they document their training datasets.In our presentation, we discuss the key findings from the Engineering Report, including key metadata identified from Earth observation use cases, the current state of the art, thoughts on cataloguing and describing training data quality, and how the FAIR principles apply to training data. " @default.
- W4321501376 created "2023-02-23" @default.
- W4321501376 creator A5009300602 @default.
- W4321501376 creator A5080349832 @default.
- W4321501376 creator A5082985758 @default.
- W4321501376 creator A5086090546 @default.
- W4321501376 date "2023-05-15" @default.
- W4321501376 modified "2023-09-30" @default.
- W4321501376 title "OGC Testbed-18 Machine Learning Training Datasets Task: Application of standards to Machine Learning training datasets" @default.
- W4321501376 doi "https://doi.org/10.5194/egusphere-egu23-3493" @default.
- W4321501376 hasPublicationYear "2023" @default.
- W4321501376 type Work @default.
- W4321501376 citedByCount "0" @default.
- W4321501376 crossrefType "posted-content" @default.
- W4321501376 hasAuthorship W4321501376A5009300602 @default.
- W4321501376 hasAuthorship W4321501376A5080349832 @default.
- W4321501376 hasAuthorship W4321501376A5082985758 @default.
- W4321501376 hasAuthorship W4321501376A5086090546 @default.
- W4321501376 hasConcept C111919701 @default.
- W4321501376 hasConcept C119857082 @default.
- W4321501376 hasConcept C127413603 @default.
- W4321501376 hasConcept C136764020 @default.
- W4321501376 hasConcept C153083717 @default.
- W4321501376 hasConcept C154945302 @default.
- W4321501376 hasConcept C188087704 @default.
- W4321501376 hasConcept C20136886 @default.
- W4321501376 hasConcept C201995342 @default.
- W4321501376 hasConcept C205649164 @default.
- W4321501376 hasConcept C2780451532 @default.
- W4321501376 hasConcept C31395832 @default.
- W4321501376 hasConcept C41008148 @default.
- W4321501376 hasConcept C58640448 @default.
- W4321501376 hasConcept C93518851 @default.
- W4321501376 hasConcept C9770341 @default.
- W4321501376 hasConceptScore W4321501376C111919701 @default.
- W4321501376 hasConceptScore W4321501376C119857082 @default.
- W4321501376 hasConceptScore W4321501376C127413603 @default.
- W4321501376 hasConceptScore W4321501376C136764020 @default.
- W4321501376 hasConceptScore W4321501376C153083717 @default.
- W4321501376 hasConceptScore W4321501376C154945302 @default.
- W4321501376 hasConceptScore W4321501376C188087704 @default.
- W4321501376 hasConceptScore W4321501376C20136886 @default.
- W4321501376 hasConceptScore W4321501376C201995342 @default.
- W4321501376 hasConceptScore W4321501376C205649164 @default.
- W4321501376 hasConceptScore W4321501376C2780451532 @default.
- W4321501376 hasConceptScore W4321501376C31395832 @default.
- W4321501376 hasConceptScore W4321501376C41008148 @default.
- W4321501376 hasConceptScore W4321501376C58640448 @default.
- W4321501376 hasConceptScore W4321501376C93518851 @default.
- W4321501376 hasConceptScore W4321501376C9770341 @default.
- W4321501376 hasLocation W43215013761 @default.
- W4321501376 hasOpenAccess W4321501376 @default.
- W4321501376 hasPrimaryLocation W43215013761 @default.
- W4321501376 hasRelatedWork W1004854468 @default.
- W4321501376 hasRelatedWork W16091841 @default.
- W4321501376 hasRelatedWork W1633111666 @default.
- W4321501376 hasRelatedWork W1966722352 @default.
- W4321501376 hasRelatedWork W2027197869 @default.
- W4321501376 hasRelatedWork W2033101102 @default.
- W4321501376 hasRelatedWork W2045530841 @default.
- W4321501376 hasRelatedWork W2107727582 @default.
- W4321501376 hasRelatedWork W2748952813 @default.
- W4321501376 hasRelatedWork W2518236032 @default.
- W4321501376 isParatext "false" @default.
- W4321501376 isRetracted "false" @default.
- W4321501376 workType "article" @default.