Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321510626> ?p ?o ?g. }
- W4321510626 abstract "Non-intrusive load monitoring (NILM), problem is a method that translates consumer’s electricity consumption data into the electricity consumption for each appliance in smart grids. New approach for NILM has been proposed in this article that uses combination of long short-term memory (LSTM) networks and convolutional neural networks (CNN). Due to the complexity of NILM problem, application of deep neural networks could be advantageous because of its performance and flexibility. In this article proposed method significantly enhances the efficiency of NILM due to implementation of both deep neural networks. It applies sequence to sequence learning, which predefined window of the consumption is fed as an input and specified appliance consumption data is considered as output. Real-world household energy data set REFIT has been used for training and testing the proposed method. In this study the RFIT data set has been used, and electricity consumption data of 20 households with nine appliances measured at 8-second intervals. The electricity usage data have been recorded regularly over a two-year period for 20 British households. The proposed method managed to reach accuracy, Fl-score and estimated energy measures by 95.93%, 80.93% and 93.67%, respectively that validates accuracy and performance. Comparison of the proposed method’s results and recently published studies has been presented and discussed based on accuracy, number of considered appliances and the size of the deep neural network’s trainable parameters. The proposed method shows remarkable performance compared to past studies." @default.
- W4321510626 created "2023-02-24" @default.
- W4321510626 creator A5007986417 @default.
- W4321510626 date "2022-12-28" @default.
- W4321510626 modified "2023-09-28" @default.
- W4321510626 title "Machine learning approach for non-intrusive load monitoring in smart grids: new deep learning method based on long short-term memory and convolutional neural networks" @default.
- W4321510626 cites W1735866749 @default.
- W4321510626 cites W1987077486 @default.
- W4321510626 cites W2043279449 @default.
- W4321510626 cites W2058580716 @default.
- W4321510626 cites W2107747280 @default.
- W4321510626 cites W2123910460 @default.
- W4321510626 cites W2180975645 @default.
- W4321510626 cites W2209987497 @default.
- W4321510626 cites W2292806482 @default.
- W4321510626 cites W2344234701 @default.
- W4321510626 cites W2515519620 @default.
- W4321510626 cites W2526261332 @default.
- W4321510626 cites W2549449854 @default.
- W4321510626 cites W2593117036 @default.
- W4321510626 cites W2784248148 @default.
- W4321510626 cites W2891864814 @default.
- W4321510626 cites W2897435227 @default.
- W4321510626 cites W2900682747 @default.
- W4321510626 cites W2923245709 @default.
- W4321510626 cites W2940376342 @default.
- W4321510626 cites W2945599056 @default.
- W4321510626 cites W2964267916 @default.
- W4321510626 cites W3009832084 @default.
- W4321510626 cites W3010208964 @default.
- W4321510626 cites W3044070975 @default.
- W4321510626 cites W3045430323 @default.
- W4321510626 cites W3087727806 @default.
- W4321510626 cites W3089119339 @default.
- W4321510626 cites W3090610511 @default.
- W4321510626 cites W3108591937 @default.
- W4321510626 cites W3119642604 @default.
- W4321510626 cites W3119894941 @default.
- W4321510626 cites W3131022253 @default.
- W4321510626 doi "https://doi.org/10.1109/icspis56952.2022.10044076" @default.
- W4321510626 hasPublicationYear "2022" @default.
- W4321510626 type Work @default.
- W4321510626 citedByCount "1" @default.
- W4321510626 countsByYear W43215106262023 @default.
- W4321510626 crossrefType "proceedings-article" @default.
- W4321510626 hasAuthorship W4321510626A5007986417 @default.
- W4321510626 hasConcept C10558101 @default.
- W4321510626 hasConcept C105795698 @default.
- W4321510626 hasConcept C108583219 @default.
- W4321510626 hasConcept C119599485 @default.
- W4321510626 hasConcept C119857082 @default.
- W4321510626 hasConcept C121332964 @default.
- W4321510626 hasConcept C124101348 @default.
- W4321510626 hasConcept C127413603 @default.
- W4321510626 hasConcept C144024400 @default.
- W4321510626 hasConcept C147168706 @default.
- W4321510626 hasConcept C154945302 @default.
- W4321510626 hasConcept C177264268 @default.
- W4321510626 hasConcept C199360897 @default.
- W4321510626 hasConcept C206658404 @default.
- W4321510626 hasConcept C2780165032 @default.
- W4321510626 hasConcept C2780598303 @default.
- W4321510626 hasConcept C30772137 @default.
- W4321510626 hasConcept C33923547 @default.
- W4321510626 hasConcept C36289849 @default.
- W4321510626 hasConcept C41008148 @default.
- W4321510626 hasConcept C50644808 @default.
- W4321510626 hasConcept C58489278 @default.
- W4321510626 hasConcept C61797465 @default.
- W4321510626 hasConcept C62520636 @default.
- W4321510626 hasConcept C79403827 @default.
- W4321510626 hasConcept C81363708 @default.
- W4321510626 hasConceptScore W4321510626C10558101 @default.
- W4321510626 hasConceptScore W4321510626C105795698 @default.
- W4321510626 hasConceptScore W4321510626C108583219 @default.
- W4321510626 hasConceptScore W4321510626C119599485 @default.
- W4321510626 hasConceptScore W4321510626C119857082 @default.
- W4321510626 hasConceptScore W4321510626C121332964 @default.
- W4321510626 hasConceptScore W4321510626C124101348 @default.
- W4321510626 hasConceptScore W4321510626C127413603 @default.
- W4321510626 hasConceptScore W4321510626C144024400 @default.
- W4321510626 hasConceptScore W4321510626C147168706 @default.
- W4321510626 hasConceptScore W4321510626C154945302 @default.
- W4321510626 hasConceptScore W4321510626C177264268 @default.
- W4321510626 hasConceptScore W4321510626C199360897 @default.
- W4321510626 hasConceptScore W4321510626C206658404 @default.
- W4321510626 hasConceptScore W4321510626C2780165032 @default.
- W4321510626 hasConceptScore W4321510626C2780598303 @default.
- W4321510626 hasConceptScore W4321510626C30772137 @default.
- W4321510626 hasConceptScore W4321510626C33923547 @default.
- W4321510626 hasConceptScore W4321510626C36289849 @default.
- W4321510626 hasConceptScore W4321510626C41008148 @default.
- W4321510626 hasConceptScore W4321510626C50644808 @default.
- W4321510626 hasConceptScore W4321510626C58489278 @default.
- W4321510626 hasConceptScore W4321510626C61797465 @default.
- W4321510626 hasConceptScore W4321510626C62520636 @default.
- W4321510626 hasConceptScore W4321510626C79403827 @default.
- W4321510626 hasConceptScore W4321510626C81363708 @default.
- W4321510626 hasLocation W43215106261 @default.
- W4321510626 hasOpenAccess W4321510626 @default.