Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321596006> ?p ?o ?g. }
- W4321596006 endingPage "807" @default.
- W4321596006 startingPage "789" @default.
- W4321596006 abstract "Abstract. This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets, while also leveraging recent advances in machine-learning algorithms. The framework integrates high-resolution building inventory data with earthquake ground shaking intensity maps and surface-level changes detected by comparing pre- and post-event InSAR (interferometric synthetic aperture radar) images. We demonstrate the use of ensemble models in a machine-learning approach to classify the damage state of buildings in the area affected by an earthquake. Both multi-class and binary damage classification are attempted for four recent earthquakes, and we compare the predicted damage labels with ground truth damage grade labels reported in field surveys. For three out of the four earthquakes studied, the model is able to identify over 50 % or nearly half of the damaged buildings successfully when using binary classification. Multi-class damage grade classification using InSAR data has rarely been attempted previously, and the case studies presented in this report represent one of the first such attempts using InSAR data." @default.
- W4321596006 created "2023-02-24" @default.
- W4321596006 creator A5000172488 @default.
- W4321596006 creator A5037991930 @default.
- W4321596006 creator A5054046517 @default.
- W4321596006 creator A5079572183 @default.
- W4321596006 creator A5085203169 @default.
- W4321596006 date "2023-02-23" @default.
- W4321596006 modified "2023-10-11" @default.
- W4321596006 title "Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning" @default.
- W4321596006 cites W1971444184 @default.
- W4321596006 cites W1984323748 @default.
- W4321596006 cites W2027000042 @default.
- W4321596006 cites W2051446435 @default.
- W4321596006 cites W2072196501 @default.
- W4321596006 cites W2101807845 @default.
- W4321596006 cites W2189378346 @default.
- W4321596006 cites W2467637883 @default.
- W4321596006 cites W2522177496 @default.
- W4321596006 cites W2729239315 @default.
- W4321596006 cites W2792148934 @default.
- W4321596006 cites W2794188842 @default.
- W4321596006 cites W2795518432 @default.
- W4321596006 cites W2809467091 @default.
- W4321596006 cites W2897480221 @default.
- W4321596006 cites W2898300628 @default.
- W4321596006 cites W2902742846 @default.
- W4321596006 cites W2911964244 @default.
- W4321596006 cites W2933746868 @default.
- W4321596006 cites W2934834621 @default.
- W4321596006 cites W2945272354 @default.
- W4321596006 cites W2962893256 @default.
- W4321596006 cites W2974551902 @default.
- W4321596006 cites W2991074454 @default.
- W4321596006 cites W2998103960 @default.
- W4321596006 cites W2999491422 @default.
- W4321596006 cites W3006526286 @default.
- W4321596006 cites W3039164877 @default.
- W4321596006 cites W3046705597 @default.
- W4321596006 cites W3080944380 @default.
- W4321596006 cites W3099802519 @default.
- W4321596006 cites W3110052155 @default.
- W4321596006 cites W3115470671 @default.
- W4321596006 cites W3118292957 @default.
- W4321596006 cites W3130346019 @default.
- W4321596006 cites W3174841800 @default.
- W4321596006 cites W3183149794 @default.
- W4321596006 cites W3191696375 @default.
- W4321596006 doi "https://doi.org/10.5194/nhess-23-789-2023" @default.
- W4321596006 hasPublicationYear "2023" @default.
- W4321596006 type Work @default.
- W4321596006 citedByCount "5" @default.
- W4321596006 countsByYear W43215960062023 @default.
- W4321596006 crossrefType "journal-article" @default.
- W4321596006 hasAuthorship W4321596006A5000172488 @default.
- W4321596006 hasAuthorship W4321596006A5037991930 @default.
- W4321596006 hasAuthorship W4321596006A5054046517 @default.
- W4321596006 hasAuthorship W4321596006A5079572183 @default.
- W4321596006 hasAuthorship W4321596006A5085203169 @default.
- W4321596006 hasBestOaLocation W43215960061 @default.
- W4321596006 hasConcept C119857082 @default.
- W4321596006 hasConcept C127313418 @default.
- W4321596006 hasConcept C146849305 @default.
- W4321596006 hasConcept C154945302 @default.
- W4321596006 hasConcept C22286887 @default.
- W4321596006 hasConcept C41008148 @default.
- W4321596006 hasConcept C554190296 @default.
- W4321596006 hasConcept C62649853 @default.
- W4321596006 hasConcept C76155785 @default.
- W4321596006 hasConcept C87360688 @default.
- W4321596006 hasConceptScore W4321596006C119857082 @default.
- W4321596006 hasConceptScore W4321596006C127313418 @default.
- W4321596006 hasConceptScore W4321596006C146849305 @default.
- W4321596006 hasConceptScore W4321596006C154945302 @default.
- W4321596006 hasConceptScore W4321596006C22286887 @default.
- W4321596006 hasConceptScore W4321596006C41008148 @default.
- W4321596006 hasConceptScore W4321596006C554190296 @default.
- W4321596006 hasConceptScore W4321596006C62649853 @default.
- W4321596006 hasConceptScore W4321596006C76155785 @default.
- W4321596006 hasConceptScore W4321596006C87360688 @default.
- W4321596006 hasFunder F4320307855 @default.
- W4321596006 hasFunder F4320329098 @default.
- W4321596006 hasIssue "2" @default.
- W4321596006 hasLocation W43215960061 @default.
- W4321596006 hasOpenAccess W4321596006 @default.
- W4321596006 hasPrimaryLocation W43215960061 @default.
- W4321596006 hasRelatedWork W2018327771 @default.
- W4321596006 hasRelatedWork W2074406417 @default.
- W4321596006 hasRelatedWork W2079412610 @default.
- W4321596006 hasRelatedWork W2142660541 @default.
- W4321596006 hasRelatedWork W2148958581 @default.
- W4321596006 hasRelatedWork W2156263061 @default.
- W4321596006 hasRelatedWork W2578052485 @default.
- W4321596006 hasRelatedWork W2910315605 @default.
- W4321596006 hasRelatedWork W2945756030 @default.
- W4321596006 hasRelatedWork W3205228125 @default.
- W4321596006 hasVolume "23" @default.
- W4321596006 isParatext "false" @default.